
c©Copyright 2014

Kevin Takashi Oishi

Programming Molecules and Cells: Design Architectures for Chemical
Reaction and Gene Regulatory Networks

Kevin Takashi Oishi

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2014

Reading Committee:

Eric Klavins, Chair

Georg Seelig

James M. Carothers

Program Authorized to Offer Degree:

Electrical Engineering

University of Washington

Abstract

Programming Molecules and Cells: Design Architectures for Chemical Reaction and Gene
Regulatory Networks

Kevin Takashi Oishi

Chair of the Supervisory Committee:

Associate Professor Eric Klavins

Electrical Engineering

The stages of cell differentiation are often illustrated as a sequence of events and chemical

cues that move a cell from one state to another. Differentiated cells send and receive signals

to compute functions on their environments and perform complex tasks such as pattern

formation. But how would one program a cell, de novo, to have these behaviors? Great

strides have been made in developing tools for genetically modifying organisms to carry out

simple tasks, and the wealth of literature in quantitative biology and genome engineering

speaks to these efforts. However, what may be missing is an engineering framework—a

formal layering of mathematical abstractions connected to physical implementations via a

“biomolecular compiler”. Engineering frameworks and compilers are instrumental to the

design and implementation of other technological systems—it is the reason that complex

commercial airplanes can be proven safe, and that computers are useful tools and not one-of-

a-kind nests of unreliable circuitry. It seems clear that similar technomimetic frameworks

for synthetic biology should exist, however may questions remain. What abstractions or

specification languages are suitable for engineering living organisms? Are the abstractions

for specifying single celled behaviors suitable for specifying multicellular behaviors? How

are such specifications physically instantiated? The original contribution of this thesis is to

develop two frameworks for engineering dynamical and computational systems: a compiler

taking a linear I/O system as input and producing a chemical reaction network as output,

and a framework for compiling a finite state machine specification into a gene regulatory

network.

Linear I/O systems are a fundamental tool in systems theory, and have been used to design

complex circuits and control systems in a variety of settings. In Chapter 2 I present a

principled design method for implementing arbitrary linear I/O systems with biochemical

reactions. This method relies on two levels of abstraction: first, an implementation of linear

I/O systems using idealized chemical reactions, and second, an approximate implementation

of the ideal chemical reactions with enzyme-free, entropy-driven DNA reactions. The ideal

linear dynamics are shown to be closely approximated by the chemical reactions model

and the DNA implementation. The approach is illustrated with integration, gain, and

summation as well as with the ubiquitous robust proportional-integral (PI) controller.

Finite state machines are fundamental computing devices at the core of many models of

computation. In biology, finite state machines are commonly used as models of development

in multicellular organisms. In Chapter 3 I describe a method by which any finite state

machine can be built using nothing more than a suitably engineered network of readily

available repressing transcription factors. In particular, I show the mathematical equivalence

of finite state machines with a Boolean model of gene regulatory networks. I describe how

such networks can be realized with a small class of promoters and transcription factors.

To demonstrate the robustness of our approach, I show that the behavior of the ideal

Boolean network model approximates a more realistic delay differential equation model of

gene expression. Finally, I explore a framework for the design of more complex systems

via an example, synthetic bacterial microcolony edge detection, that illustrates how finite

state machines could be used together with cell signaling to construct novel multicellular

behaviors.

The results presented in this work contribute to both engineering and basic science. To

the engineer, these frameworks provide a possible method by which living dynamical and

computational systems may be specified and physically realized. To the scientist these

frameworks provide a hypothesis about the computational limits of single cells, and a new

light in which examine and compare multicellular behavior.

TABLE OF CONTENTS

Page

List of Figures . iv

Notation . xi

Chapter 1: Background and Motivation . 1

1.1 Abstract Models of Multicelled Systems . 2

1.2 Finite State Machines as a Building Blocks 3

1.3 Overview . 5

Chapter 2: Biomolecular Implementation of Linear I/O Systems 7

2.1 Biomolecular Device as an I/O System . 7

2.2 Linear I/O Systems . 10

2.3 Construction of a Chemical Reaction Network from a Linear I/O System
Specification . 11

2.3.1 Signals Represented as Chemical Concentrations 12

2.3.2 Integration . 13

2.3.3 Gain and Summation . 14

2.3.4 Any Linear I/O System can be Approximated with Ideal Chemical
Reactions . 15

2.3.5 A Simple Optimization: Weighted Integration and Summation 19

2.3.6 Example: Ideal Chemical Reaction Network Implementation of a PI
Controller . 19

2.4 Robustness and Sensitivity of Modeling Parameters and Disturbances in the
Ideal Chemical Reaction Model . 22

2.4.1 The Role of γ in the Time Domain . 22

2.4.2 Fast Annihilation and Imperfect Rate Matching in the Chemical Re-
alization of Integration, Gain, and Summation 24

2.4.3 The Effect of Production and Degradation of Signal Species on the
Chemical Realization of a Linear I/O System 27

i

2.5 Mapping Integration, Summation, and Gain to DNA Strand Displacement
Reactions . 29

2.5.1 Example: DNA PI Controller . 32

2.6 Discussion . 33

2.7 Methods . 33

Chapter 3: A Framework for Implementing Finite State Machines in Gene Regu-
latory Networks . 34

3.1 Finite State Machines . 34

3.2 Modeling Gene Regulatory Networks . 37

3.2.1 Biomolecular Parts . 38

3.2.2 Boolean Network Model . 41

3.2.3 Delay Differential Equation Model . 43

3.3 General Construction of a GRN from an FSM Specification 45

3.3.1 Boolean Network Model of the General Construction 48

3.3.2 DDE Model of the General Construction 51

3.3.3 Example: Two-state Machine as a Boolean Network 52

3.3.4 Example: Two-state Machine as a System of DDEs 54

3.4 GRNs are Computationally Equivalent to FSMs 56

3.5 DDEs Approximate the Behavior of the Boolean Network 62

3.6 The FSM Framework in a Cellular Information Processing Context 65

3.6.1 Example: Bacterial Microcolony Edge Detection Circuit 67

3.7 Discussion . 70

3.8 Methods . 70

Chapter 4: Conclusions . 72

Bibliography . 75

Appendix A: Implementation and Simulation Details for the Chemical Realization
and DNA Implementation of Linear I/O Systems 81

A.1 Catalysis, Degradation, Annihilation . 81

A.2 Integration, Gain, Summation . 82

A.2.1 Integration . 82

A.2.2 Gain . 84

A.2.3 Summation . 84

ii

A.3 Ideal Chemical Reaction Network and DNA Implementation of the PI Con-
troller . 86

Appendix B: Bacterial Microcolony Edge Detection 89

Appendix C: Boolean Network Model as it Relates to Neural Networks 91

C.1 McClulloch-Pitts Cells . 91

C.2 Neural Networks . 93

Appendix D: Future Directions . 95

D.1 CRISPR-based Finite State Machines . 95

D.2 Streptobacilli Implementation of a Turing Tape Machine 96

iii

LIST OF FIGURES

Figure Number Page

2.1.1 PI controller block diagram and behavior. (a) Block diagram for a PI con-
troller. The signal u is an input, y is an output signal, and x1, . . . , x6 are
internal signals. The negative sign next to the edge going into the left sum-
mation block means that the output of the summation is x1 = u− y. The PI
controller is a feedback system that tracks an input signal over a large class
of plants P (s). Here the plant P (s) is implemented with reactions (2.3.22–
2.3.23). (b) Input signal driving the PI controller. The input signal u is a
square wave. (c) Output trajectories for the ideal PI controller as well as
the PI controller implemented with ideal chemical reactions and the DNA
model. The steady-state error observed in the DNA model of the PI con-
troller is a result of the sequestration of signal molecule y± in intermediate
reaction species involved in the left summation block. 9

2.2.1 Primitive components of continuous time linear I/O systems represented as
a block diagram, state space equations, and frequency space equations. 11

2.3.1 Step response of the linear block model, chemical reaction representation,
and DNA model of integration, gain, and summation blocks. For each sys-
tem the input u1 is a square wave. (a) Integration block. The linear block
model follows the trajectory y(t) =

∫ t
0 u1(t). The ideal chemical reaction rep-

resentation follows this trajectory precisely. The DNA model drifts from the
ideal chemical reaction trajectory as molecular fuel species are consumed. (b)
Gain block. The linear block model follows the trajectory y(t) = 3u1(t). The
chemical reaction representation produces the correct steady-state output.
As with integration, the DNA model closely follows the ideal chemical reac-
tion trajectory, but drifts as fuel species are consumed. (c) Summation block.
The linear block model follows the trajectory y(t) = u1(t) + u2(t). Given in-
puts u1 and u2 the output should consist of four monotonically decreasing
steps. The chemical reaction representation follows each step in steady-state.
As before, the DNA model drifts from the ideal chemical reaction represen-
tation as fuel species are consumed. 18

iv

2.3.2 Approximation error for optimized and unoptimized ideal chemical reaction
representations of the I/O system ẋ = 1

2u, y = x. (a) Block diagram rep-
resenting the ideal weighted integration system. (b) Unoptimized chemical
reaction representation. This representation consists of three pairs of signal
species, a gain block and an integration block. The signal dynamics resulting
from mass action kinetics is a second order linear system. (c) Optimized
chemical reaction representation. This representation consists of two pairs of
signal species and a single weighted integration block. The signal dynamics
resulting from mass action kinetics is a first order linear system that matches
the dynamics of the ideal system. (d) Error trajectory for the signal y given
u(0) = u+(0) − u−(0) = 1 and x(0) = y(0) = 0. The unoptimized chemi-
cal reaction representation of the weighted integration system results in some
nonzero steady-state error which decreases monotonically as γ increases. The
optimized chemical reaction representation results in zero steady state error. . 20

2.3.3 PI controller from Fig. 2.1.1a implemented in ideal chemical reactions. 22

2.4.1 Output trajectories from chemical realizations of the PI Controller from Fig-
ure 2.1.1. The ideal chemical realization matches reaction rates between
pairs of reactions. Rate-varied chemical realization output trajectories were
obtained by varying the reaction rates ±10% from the ideal reaction rates
randomly with a uniform distribution over 50 simulations. 26

2.5.1 Ideal chemical reaction, DNA implementation, and signal response for (a)
catalysis, (b) degradation, and (c) annihilation reactions. The domain 1q is
a subset of the domain 1. The initial concentration of fuel species Gi, Ti, Li,
Bi, LSi, and BSi are set to Cmax = 1 nM, 10 nM, 100 nM, 1000 nM. For
the catalysis and degradation response, u(0) = 1 nM. For the annihilation
response, u+(0) = 1ζ nM, u−(0) = 0.5ζ nM where ζ = 2 is a scaling factor
that attenuates for the initial fast transient where u+ and u− are sequestered
in intermediate species. All other initial concentrations are set to zero. 31

3.1.1 Simple two-state machine described as (A) a directed graph representation
of a finite state machine, (B) a gene regulatoy network made of repressing
transcription factors and inducers, and (C) a biomolecular realization of the
same GRN using the parts described in Figure 3.2.1. In the GRN repre-
sentation orange circles denote transition species, purple circles denote state
species, and green circles denote sensor species. In the GRN and biomolecu-
lar realization, the gene network is in state i when species Ri is at a low level
expression, and following transition δ(q, σ) when transition species Tσq is at
a high level of expression. 36

v

3.2.1 Biomolecular parts for realizing finite state machines: (A) Transcriptionally
regulated and unregulated promoters. Transcriptionally regulated promot-
ers have specific DNA sequences illustrated as blue bars that may be bound
by domain III on a repressing transcription factors. Transcriptionally un-
regulated promoter is nominally “on”. (B) Transcription factors are made
of three primary components: a transcriptional repression domain; an op-
tional signaling molecule binding site; and a programmable DNA binding
domain. Sensed molecules are small diffusable signaling molecules that bind
to recognition sites (i.e. a degron) in programmable transcription factors,
and catalyze degradation of the transcription factor. Also illustrated is a
fluorescently labeled transcription factor, which we use to distinguish “state”
proteins from “transition” proteins. 38

3.2.2 Components of a biomolecular realization of finite state machines, represented
as a GRN, Boolean network equations, and delay differential equations. In
the delay differential equation representation, τ denotes the delay associated
with transcription and translation, β is the rate of dilution associated with
cell growth, and Vmax is the maximum rate of production of a gene product.
The delay differential equations follow a Michaeles-Menten form where k1/2

and n are the Michaeles constant and Hill coefficient respectively. 40

3.3.1 Boolean network and DDE trajectories for the two-state FSM from Fig-
ure 3.1.1. In this simulation, τ = 1, n = 2, Vmax = β = 20, k1/2 = 0.2,
kp=200. Solid lines denote Boolean network trajectories and dotted lines de-
note DDE trajectories. The top three plots show the input trajectories of a,
b, and START that encode the sequence “aabba”. The control input for the
Boolean network and DDE model are identical. The middle two plots show
to the expression level of state genes R0 and R1 where low expression of Ri
corresponds to being in state i of the FSM. The bottom four plots illustrate
the expression level of transition genes Ta0, Tb0, Ta1, and Tb1, where high
expression of Tσq denotes the transition δ(q, σ) in the FSM. 50

3.5.1 Modulo-two pulse counter machine described as (A) a directed graph repre-
sentation of a finite state machine, (B) a gene regulatory network. In the
GRN representation, an unspecified mechanism makes the ε signal available
except in the presense of the a signal. (C) Boolean network and DDE tra-
jectories for the modulo-two pulse counter machine specified by the GRN. In
this simulation, τ = 1, k1/2 = 0.2, and β = Vmax. Vmax and n are varied,
with larger values of Vmax and n resulting in trajectories that more closely
follow the ideal Boolean network trajectories. 64

vi

3.5.2 Average error and threshold error for the modulo-two pulse counter illus-
trated in Figure 3.5.1. Error metrics (Eqs. (3.5.1–3.5.2)) compare the state
of the DDE model to the state of the ideal Boolean network model. Error is
computed following a control input of five pulses of signaling molecule a. The
heat map shows the error for varying Hill coefficient n over a range of values
for k1/2, log Vmax, and input pulsewidth ∆t, given τ = 1 and β = Vmax. Nom-
inally τ = 1, ∆t = 20, Vmax = β = 10, and k1/2 = 0.3. Zero error means that
the DDE model and Boolean network model end in the same state, while an
error of one means there is maximal error between models. In this example,
increasing pulse width ∆t, the rate of production and degradation dynamics
Vmax and β, or the Hill coefficient n, improves performance. 66

3.6.1 Finite state machine specification and snapshots from a gro simulation of
the bacterial microcolony edge detection circuit. (A) The edge detection
circuit consists of three asynchronous and parallel finite state machines and
three sensor/effector modules based on existing biomolecular circuits. The
stochastic pulse generator is a source of genetic noise, the band pass filter
responds to middle and high concentrations of a diffusable emit signal, and
the timer emits an intercellular signal at times t1 and t2 after receiving a pulse
of the reset signal. (B) A homogeneous microcolony grows from a single cell.
As the microcolony grows, cells stochastically begin a “wave”. Cells relay the
wave and measure the local concentration of the diffusable emit signal after
a short refractory period, to determine whether a cell is in the middle or on
the edge of a microcolony. Cells on the edge move to a RFP producing state,
while cells in the middle relax to a non-RFP producing state. 68

3.6.2 Gene regulatory network realization of the bacterial microcolony edge de-
tection circuit depicted in Figure 3.6.1. Finite state machine modules are
separated by gray modules. The upper left module encodes the wave gener-
ator, the module below it encodes the toggle switch, and the module in the
upper right encodes the edge detection FSM. The bottom module contains
specifications for the unrealized sensors and effectors. Sensor and effector
specifications consist of an optional input signal, output signal, and a de-
scription of the behavior of the module. Red lines depict how genes in the
finite state machines are wired to sensors, and blue lines depict how sensors
are wired to signals. The purple cloud around emit indicates that emit is an
external diffusable cell-cell signaling molecule; all other signals are considered
internal. 71

vii

A.2.1Linear model, ideal chemical realization, and DNA implementation for inte-
gration of a square wave input. (a) Integration is approximated by three ideal
chemical reactions. The DNA implementation is modeled by eight reactions.
The square wave input is implemented by a single annihilation reaction and
two instantaneous additions of chemical species at time t = 0 and t = 600.
(b) Rate and concentration parameters for the simulated trajectories that
appear in Figure 3a. The initial concentration of fuel species G±i , T±i , Li,
Bi, LSi, and BSi, are set to Cmax. All other initial concentrations are set to
0 nM unless otherwise specified. 83

A.2.2Linear model, ideal chemical realization, and DNA implementation of a gain
using a square wave input. (a) Gain is approximated with five ideal chemical
reactions. The DNA implementation is modeled with nine reactions. The
square wave input is modeled by an annihilation reaction and two instanta-
neous additions of chemical species at time t = 0 and t = 4000. (b) Rate
and concentration parameters for the simulated trajectories that appear in
Figure 3b. Initial concentration of fuel species are set to Cmax. All other
initial concentrations are set to 0 nM. 85

A.2.3Linear model, ideal chemical realization, and DNA implementation of sum-
mation using two square wave inputs. (a) Two-input summation is approx-
imated with seven ideal chemical reactions. The DNA implementation is
modeled with 16 reactions. The square wave inputs are modeled by an an-
nihilation reaction for each input signal, as well as instantaneous additions
of chemical species at times t = 0, 5000, 1000, 15000. (b) Rate and con-
centration parameters for the simulated trajectories that appear in Figure
3c. Initial concentration of fuel species are set to Cmax. All other initial
concentrations are set to 0 nM. 86

A.3.1PI Controller with production and degradation disturbances. (a) The PI
controller is approximated with 17 ideal chemical reactions, or 19 reactions
including the chemical disturbance. The DNA implementation is modeled
with 30 reactions, or 33 reactions including the chemical disturbance. The
square wave input is modeled by an annihilation reaction and four instanta-
neous additions of chemical species u+ and u− at times t = 0, 75000, 150000,
225000. (b) Rate and concentration parameters for the simulated trajectories
that appear in Figure 1c. Fuel species G±i , T±i , Li, Bi, LSi, and BSi, are set
to Cmax. All other species have initial concentration 0 nM. 88

viii

C.1.1Examples of neural networks made with a single McClulloch-Pitts cell, along
with the finite state machine simulating the neuron starting from ground
state (inputs set to 0). For each neuron, input fibers are on the left and
a single unlabeled output fiber is on the right. Each neuron is labeled with
the threshold value h = 0, 1, 2. Finite state machines have states 0 and 1
corresponding to the neuron firing or not firing. Input symbols are binary
sequences corresponding to the state of the inputs fibers (0 or 1). Networks
(a)-(d) compute the named Boolean logic operation on their input in a single
time step. (e) The Majority cell will fire when a majority of the input fibers
are set to 1 at the previous time step. (f) The Delay function relays the state
of the input fiber with a unit delay. Note that by wiring together neurons
(a)-(c) and (f), or (c)-(d) and (f), any Boolean function can be computed in
a finite number of time steps with a non-recurrent network. As it turns out,
(c)-(d) are sufficient to simulate any finite state machine. 92

C.2.1Examples illustrating the equivalence of GRNs made only of nominally “on”
repressing transcription factors, with neural networks where for each cell
h = 0, and all connections are inhibitory. For clarity, input fibers (u1, u2)
and neurons (x, x1, x2, y) have been named to correspond with molecular
species in the GRN. In (a)-(d), each network computes the named Boolean
logic operation on its inputs. (a)-(b) compute NOT and NOR in a single
time step, where as (c)-(d) require two time steps to propagate the input to
the output y for AND and OR functions. Here AND and OR networks are
formed by composing the NOT and NOR networks. (a)-(b) are sufficient to
simulate arbitrary finite state machines. 94

D.1.1Biomolecular components for realizing finite state machines: (A) Transcrip-
tionally regulated and constitutive promoters. Transcriptionally regulated
promoters have one or more specific DNA sequences designed to bind to re-
pressing transcription factors. Binding sequences are illustrated as blue bars.
Promoters are nominally “on” unless repressed by one or more transcrip-
tion factors. (B) Transcription factors for sensing auxin and β-estradiol are
made of four primary components: a transcriptional repression domain; a
programmable DNA binding domain; and optional auxin degron or estrogen
receptor. (C) CRISPR trascription factors are used to implement the finite
state machine logic. The primary components of a CRISPR transcription
factor are constitutively expressed nuclease deficient Cas9 (dCas9) fused to
a repression domain (RD), and programmable single guide RNA (sgRNA)
customized for specific DNA binding sequences. The scaffold section of the
sgRNA binds to the dCas9-RD, enabling targeted repression of specific genes. 96

ix

D.1.2Simple two-state machine described as a biomolecular realization of the gene
regulatory network using parts from Figure D.1.1. Input symbols a and b
are implemented as auxin and β-estradiol respectively. The gene network is
arranged to mirror the layout of the gene regulatory network in (B). Sensor
genes (Sa and Sb in the GRN) are implemented as auxin and β-estradiol sen-
sors using transcription factors illustrated Figure D.1.1B. State and transition
genes (Ri and Tqσ in the GRN) are implemented as CRISPR transcription
factors formed by constitutive dCas9-RD and sgRNA sequences expressed
under transcriptionally regulated promoters. For example, Ta0 in the GRN
is implemented as sgRNA-R1 which is regulated by binding sites for sgRNA-
T0 and transcription factor Sa. When sgRNA-R1 is in high concentration,
a transcription factor is formed that binds to DNA binding sequence R1,
repressing the expression of sgRNA-T1 (state gene R1 in the GRN). 97

D.2.1Turing’s tape machine and a simulating microcolony. (a) Tape cells are repre-
sented by contiguous squares, and labeled with a tape symbols B, γ1, . . . , γn ∈
Γ. Initially the tape is seeded with the input γ1, . . . , γn, and the tape head
begins over the first input cell. At each time step the tape head reads the
current cell, updates the automation A, writes a new symbol from Γ to the
tape, and moves the tape one cell to the left or right. (b) A growing line
of cells simulate a Tape machine. Every cell runs a finite state automation,
allowing a cell to behave as both the tape and the tape head. A microcolony
edge detection program allows cells to tell if they are on the edge of the tape,
and divide if the tape head is approaching. Cells shaded yellow are on the
edge of the microcolony. At t = m, the cell labeled γn, H holds the tape
head (denoted H), and is marked with the symbol γn. All other cells are
labeled Hl or Hr to denote that they are left of the tape head or right of the
tape head, respectively. At time t = m+ 1, the cell marked as the tape head
emits a signal (illustrated as a blue halo), to communicate to its immediate
neighbors the current state at the tape head, and the intension to move the
tape head one cell to the right. At time t = m + 2, the old tape head has
relabeled itself Hl. The cell to the right of the old tape head, having the state
Hr moves to the state H upon receiving the blue signal, becoming the new
tape head. Simultaneously, the right edge cell, detecting the tape head ap-
proaching, begins dividing to guarantee the tape continues to extend beyond
the tape head. 99

x

NOTATION

B Boolean values ({0, 1}, {false, true}, and {off , on} will be used interchangeably,

and the intended meaning should be clear from context)

G(V,E) directed graph G with vertex set V = {v1, . . . , vn} and edge set E = {vi → vj},
where vi → vj in this context means there is a directed edge from vertex vi to

vertex vj

N the natural numbers {0, 1, 2, . . . }

R,R+ the reals, positive reals

Z,Z+ the integers, positive integers

xi

ACKNOWLEDGMENTS

My detour into synthetic biology began in 2006 when I joined Professor Eric Klavin’s lab

with the fuzzy notion that I wanted to learn more about algorithms and control for self-

organizing and distributed systems. After all, isn’t molecular programming basically like

working with an immense number of very tiny, very stupid robots? Since that time I’ve

had the good fortune to collaborate and work with many wonderful people who have helped

sustain my enthusiasm for basic research, scientific understanding, and the pursuit of pie-

in-the-sky crazy technologies and ideas.

Many thanks go to my committee members, collaborators, and labmates, who have been

a wellspring of interesting conversation and ideas. I would specifically like to acknowledge

Nils Napp for his continual enthusiasm and for reminding me that I’ll always be a roboticist;

Josh Bishop, whom I had the pleasure of working with on several in vitro projects; David

Soloveichik, who was always willing to share ideas and offer insightful feedback; and Kyle

Havens, an outstanding collaborator and wet lab mentor. Additionally, I’ve benefited greatly

from the knowledge and expertise of Rob Egbert, Chris Takahashi, Shelly Jang, Nick Bolton,

David Thorsley, and Georg Seelig. My years in Seattle have been terrific, and some of the

many people who helped make it so enjoyable are Charlie, Laura, Justin, and Sandra. Of

course, I’d also like to thank Kelsey–I can’t imagine how different the last few years of my

doctoral program would have been without her.

Finally, there’s no way I could ever thank my family enough. My sister for her endless

support, and my parents whom always encouraged my pursuits, and worked so hard and

selflessly to provide my sister and I with educational opportunities.

xii

1

Chapter 1

BACKGROUND AND MOTIVATION

Natural biological systems are capable of complex and robust behavior. For example, sea

shells and plants grow into regular and predictable fractal patterns, starfish regenerate

limbs, and a correctly functioning adaptive immune system is a collection of cells that sense

antigens from malevolent pathogens and produce a tailored response to eliminate the threat.

Underlying these high level behaviors are a collection of growing, dividing, cells running a

genetic program specified by genomic DNA.

Engineering novel organisms to simulate existing behavior may improve our understanding

of the mechanisms and organizing principles of living systems. Additionally, understanding

how to specify and synthesize new behaviors has the potential to transform many industries

including medicine and diagnostics, food and agriculture, and energy and biofuel production.

Some kind of design theory for biochemical reaction networks and gene regulatory networks

ought to be obtainable. Such a design theory would enable the synthesis of chemical reac-

tions and gene regulatory networks from an abstract, human-understandable specification,

and allow the designer to identify which behaviors can and cannot be implemented using

a particular set of parts and design theory. Synthetic biochemical reaction networks and

gene regulatory networks with desired dynamic behaviors are difficult to design because of

inherent nonlinearities and substantial uncertainties in reaction mechanisms. Yet natural

systems abound in which reliable behavior is obtained from the composition of enormous

numbers of molecular subsystems.

Broadly speaking, there exists two types of synthetic biochemical devices: in vitro and

in vivo. Systems synthesized from DNA in vitro [1–6] are becoming substantially more

complex and reliable. With DNA, well-understood models of hybridization and strand

2

displacement are available to design and predict molecular interactions [7–9]. Recently, it

was shown that any physically realistic abstract chemical reaction can be well-approximated

by an appropriately designed DNA strand-displacement reaction [10]. Furthermore, similar

systems have been demonstrated experimentally: DNA and RNA have been used to design

a variety of devices including catalysts and amplifiers [3], logic gates [1], detectors [11],

Hopfield associative networks [12], and finite state automata [13]. In contrast, a variety

of dynamic devices have been constructed in vivo, including toggle switches [14], timers

[15], conters [16], oscillators [17], logic gates [18], and band pass filters [19, 20]. Several

multi-celled devices relying on cell-cell communication have also been constructed, including

synchronized oscillators [21], population control circuits [22], logic networks [23, 24], and

striped pattern formation [25]. However, these examples represent one-of-a-kind systems

and not general design methodologies for biochemical systems.

1.1 Abstract Models of Multicelled Systems

The task of creating such a design theory is not a new problem. Multi-celled organisms have

served as inspiration for computer scientists, roboticists, and theoretical biologists interested

in understanding the capabilities and limits of a collection of memory-limited agents or cells

using local sensing and communication to effect global behavior. The models introduced in

this body of work balance abstraction and simplification against the realities of low level

implementations, in an effort to qualitatively model or specify distributed or multicelled

behavior without relying on explicit electromechanical or biomolecular devices.

Inspired by the growth patterns of algae, Lindenmayer introduced the L-system, a parallel

rewriting grammar to formally specify and simulate fractal growth [26, 27]. Lindenmayer’s

systems contextualized a simple model of cell differentiation and growth in formal languages

and computability [28,29].

Von Neumann and Ulam introduced cellular automata and the notion of the universal

constructor [30] as an extension to Turing’s notion of computational universality [31] to

explore the question: how can machines be made to self-replicate? In the cellular automata

3

model, cells are finite state machines situated in space on a discrete lattice. The state

of all cells evolve synchronously in discrete time steps, and the state of each cell depends

on its own state and the state of adjacent cells in the lattice at the previous time step. In

this framework von Neumann illustrated sufficient conditions for self-replication and showed

that although a Turing machine can be self-replicating, a self-replicating machine need not

be Turing universal. Many variations on the cellular automata model followed, including

Conway’s well-known and biologically inspired, game of Life [32] and Wolfram’s systematic

study of 1D cellular automata rule sets [33,34].

The field of amorphous computing examines a relaxed version of cellular automata, where

cells are scattered randomly in space, and need not be arranged on a discrete and regular

lattice [35]. In an amorphous computing system, the state of each cell at a particular time

depends on its own state as well as the states of cells within a predefined communication

radius at the previous time step. An important contribution from this field are programming

languages that compile high-level, human-understandable, pattern formation specifications

into sets of local rules that are executed in parallel on every cell in the system [36–41].

Though important for their theoretical contributions, it is difficult to imagine a direct trans-

lation from these abstract models to realizable synthetic gene regulatory and biochemical

reaction networks. For example, it is not clear how to implement arbitrary finite state ma-

chines that are the basis for cellular automata theory, or generate locally unique identifiers

and communicate arbitrary data, which are necessary primitives in programming languages

for amorphous computing systems. Notably the specification and simulation language gro

was introduced to address these modeling shortcomings and provide a framework for bridg-

ing the gap between synthetic biology and distributed systems theory [42]. However, gro is

specification and simulation framework, and not a design theory.

1.2 Finite State Machines as a Building Blocks

Finite state machines are a fundamental model of computation, and can be used to rep-

resent and reason about many useful machines including counters, adders, and any other

4

kind of sequential logic. An FSM can be in one of a finite number of states at a given time.

An FSM takes as input a string of symbols that belong to a finite set. Upon the arrival

of an input symbol, the FSM updates its state according to a transition function that de-

pends on the current state of the machine and the current input symbol. As a consequence,

an FSM has a memory, and may respond differently to the same input depending on its

current state. Although the restriction to finiteness makes FSMs theoretically less capable

than other computing machines (for example, pushdown automata or Turing machines),

FSMs nevertheless form the basis of most modern models of computation [43]. Addition-

ally, FSMs have been richly explored and applied to engineering problems in electronics,

computer architecture, and computer science. In computer science, the FSM formalization

is fundamental in categorizing and understanding the limitations of theoretical and physical

machines that compute [44–46]. FSMs were fundamental in shaping the design of modern

computers where state is typically stored in latches or flip-flops [47,48].

One of the first forms of finite automata explored in the literature was a model of nerve cell

networks investigated by theoretical biologists and mathematicians [49, 50] that was later

shown to be equivalent to FSMs [46]. In fact, several synthetic biological mechanisms in

the literature have been shown to implement simple finite state machines in vivo with just

a few states. Broadly speaking, these mechanisms fall into the categories of cells that com-

pute, cells that remember, and cells that communicate. Simple computation using Boolean

logic has been demonstrated in multiple organisms with some degree of cascaded modu-

larity [18, 51–53]. Genetic toggle switches have been heavily explored as a mechanisms for

remembering stimulus events [14, 54–56]. Similar architectures have been used to imple-

ment more complex machines, such as a counter [19] and a timer [15]. Recently, elements of

simple computation and memory have been combined to implement all two-input Boolean

logic functions in Escherichia coli and store the result in DNA over the subsequent 90

cell divisions [57]. Synthetic multicellular systems have employed cell-cell communication

mechanisms with simple computing or memory circuits to implement robust and complex

behaviors such as synchronized oscillation [21], population density control [22], photosensi-

tive edge detection [58], stripe formation [25], and logic networks [23, 24]. Although these

5

examples hint at the potential power of synthetic biology to build arbitrary FSMs in cells,

a general framework [59] for the design and of synthesis of any given FSM—a sort of ‘FSM

compiler’—has yet to emerge.

A framework for engineering finite state machines from biomolecular parts would enable the

design, construction, and characterization of complex circuits from simple functional parts.

In light of the success of simple synthetic circuits, and the availability of libraries of new

parts, such as CRISPR, TALE, and Zinc Finger transcription factors [52, 60–67], tunable

promoters [68–70], and intercellular communication devices [66,71] I pose the questions: Are

these parts sufficient to realize the multi-state behaviors observed in nature? How powerful

of a computer can be made using only transcription factors in a GRN? To answer these

questions, I demonstrate via explicit mathematical construction that GRNs are, in fact,

exactly as powerful as FSMs.

1.3 Overview

Despite success in both engineering synthetic biochemical reaction networks and distributed

systems theory, a gap remains connecting the results of mathematical models to the experi-

mental and engineering realities of biological systems. Given a set of tools such as a library

of customizable transcription factors, a collection of small molecules that can diffuse through

cell walls, and programmable chemical kinetics, how does one take a specification of a mul-

ticellular behavior such as leader election, stripe formation, branching, or microcolony edge

detection, and compile that into a gene regulatory network and ultimately into a sequence

of DNA for insertion into a chassis organism?

In this work I begin to bridge this gap by applying tools of control theory and computer

science to synthesize and analyze design architectures for biomolecular systems, specifically,

methods for implementing linear I/O systems and finite state machines. In Chapter 2 I

show that any linear I/O system can be built from the composition of three types of reac-

tions, namely catalysis, degradation, and annihilation. I then show how to implement these

reactions with DNA devices, but of course, any other programmable system of molecules

6

could also be used. In Chapter 3 I explore to what extent gene regulatory networks are

equivalent to FSMs. I demonstrate a method for implementing any finite state machine with

a network of suitably wired repressing transcription factors. Notably, the biomolecular gene

regulatory parts we consider consist of only repressing transcription factors. Mathemati-

cally, repressing transcription factors by themselves represent a minimal set of part types

(i.e. an activating relation can be build from two repressing relations in series). Practically

speaking, repressing transcription factors may be easier to engineer than activators. The

correctness and effectiveness of the construction is then examined assuming the Boolean

network and DDE models for two example systems: a simple two state machine, and a

four state modulo-two pulse counter. Coupled with cell division and cell-cell communica-

tion, this framework can be used to design a logical control system for cell fate interfacing

various biomolecular sensors and effectors. The approach is illustrated through the design

and simulation of a bacterial microcolony edge detection system where cells grow, divide,

and dynamically differentiate into red fluorescing “edge” cells and non-fluorescing “center”

cells. Finally, in Chapter 4 I conclude with possible future research objectives that build

naturally on results of this dissertation.

7

Chapter 2

BIOMOLECULAR IMPLEMENTATION OF LINEAR I/O SYSTEMS

In engineering, the design of dynamic systems from unreliable or poorly modeled basic

components is not a new problem. The field of control systems engineering is focused on

the task of designing dynamic I/O systems that interact with and augment the behavior of

unknown or poorly modeled dynamic modules. I have explored the applicability of a stan-

dard design theory, linear I/O systems, to the design of predictable and robust synthetic

biochemical systems. Linear I/O systems are present in almost any engineered device, from

stereo amplifiers to aircraft autopilots, and can be implemented electronically, mechanically,

and in software. It has been shown that chemical reaction networks can approximate ar-

bitrary polynomial ordinary differential equations [72]. However, prior work in this area

lacked a practical, modular, design methodology for implementing a specified ODE, and

did not address the implementation of more abstract I/O systems. In this chapter, I show

that linear I/O systems can also be implemented with chemical reactions and, in particular,

with enzyme-free entropy-driven DNA reactions.

2.1 Biomolecular Device as an I/O System

A biomolecular device can be abstracted to an I/O device taking an input signal, such as a

time varying concentration of some chemical species, and producing an output signal. The

I/O systems abstraction allows for the composition of devices into systems of interacting

sub-systems: the output of one device is “wired” to the input of another.

Formally, an I/O system is specified by an input space, output space, an internal state, and

a mapping that describes the output signal generated given an input signal and an initial

internal state. Often an I/O system corresponds to a modular part of some physical system.

8

In equations, an I/O system in state space is described as [73]

ẋ = f(x,u) (2.1.1)

y = g(x,u), (2.1.2)

where u : R → Rn is an input signal, y : R → Rm is an output signal, x : R → Rp is the

internal state of the system, and n,m, p ∈ Z+. Note that signals such as u are functions of

time; however, for simplicity I will write u instead of u(t).

I/O systems may be composed in parallel or in series, to obtain a composite I/O system,

by combining output signals or by setting the output signal of one system to be the input

signal for another system. Composition can be represented graphically in a block diagram

by drawing a block for each subsystem and representing the connections with directed edges,

as illustrated in Fig. 2.1.1a.

Of particular interest are controllers. A controller is an I/O system built around a particular

system to be controlled (called the “plant”). For example, the controller illustrated in

Fig. 2.1.1a is a PI controller built around the plant P (s) with control input u and output

y. Often the plant corresponds to a module with unknown or poorly modeled dynamics.

The controller is designed to produce an output from the plant that is a desired function of

the control input u. Controlled systems can be categorized into open-loop and closed-loop

controllers. In an open-loop system the input to the plant does not depend on its output.

In a closed-loop system (such as in Fig. 2.1.1a) the input to the plant is a function of its

output, involving a comparison between the input to the controller and the output of the

plant. Although open-loop systems are generally easier to analyze than closed-loop systems,

feedback allows the engineer to design systems that are robust to modeling uncertainty and

errors such as exogenous disturbances and retroactivity [74,75].

9

(a) Block Diagram

+

+

-

u

y = x6

x1 x2

x3 x4

kP

kI
1
s

P (s)

(b) Input

50 000 100 000 150 000 200 000 250 000 300 000

4. 10 9

2. 10 9

2. 10 9

4. 10 9

Time, sec.

u

(c) Response

50 000 100 000 150 000 200 000 250 000 300 000

4. 10 9

2. 10 9

2. 10 9

4. 10 9

Time, sec.

DNA model

ideal chemical
reaction network

linear block
y = x6

x5

Figure 2.1.1: PI controller block diagram and behavior. (a) Block diagram for a PI controller.

The signal u is an input, y is an output signal, and x1, . . . , x6 are internal signals. The negative

sign next to the edge going into the left summation block means that the output of the summation

is x1 = u − y. The PI controller is a feedback system that tracks an input signal over a large class

of plants P (s). Here the plant P (s) is implemented with reactions (2.3.22–2.3.23). (b) Input signal

driving the PI controller. The input signal u is a square wave. (c) Output trajectories for the ideal

PI controller as well as the PI controller implemented with ideal chemical reactions and the DNA

model. The steady-state error observed in the DNA model of the PI controller is a result of the

sequestration of signal molecule y± in intermediate reaction species involved in the left summation

block.

10

2.2 Linear I/O Systems

The most well-understood and useful class of I/O systems are those constructed from linear

subsystems. The ubiquitous PI control scheme is composed of linear subsystems. Linear

systems are trivially composable—the serial composition of two linear systems is again

linear, as are the parallel composition and sum. The analysis of a large linear system is no

more difficult than the analysis of its smaller components. Furthermore, although the class

of linear systems may appear limiting, essentially all physical systems are approximately

linear near their desired operating regions. For this reason linear controllers are used to

control a large class of nonlinear plants.

There are two fundamental representations of linear systems, the state space representation

and the frequency space representation. Both representations are useful and complementary

in design and analysis. A typical single-input single-output linear system can be represented

in state space by

ẋ = Ax + Bu (2.2.1)

y = Cx + Du. (2.2.2)

Where u, y : R → R, x ∈ Rn, and A,B,C,D are appropriately sized real matrices. The

frequency space representation of this system can be found by taking the Laplace transform

of Equations (2.2.1–2.2.2).

sX(s) = AX(s) + BU(s) (2.2.3)

Y (s) = CX(s) + DU(s) (2.2.4)

The frequency space representation is only defined for linear systems. However, in frequency

space, linear systems can be analyzed based on their I/O behavior, abstracting away the

internal state x through the transfer function,

Y (s)

U(s)
= C(sI −A)−1B + D. (2.2.5)

11

Two plants may have different state space representations, yet have identical transfer func-

tions. The transfer function reduces composition and comparison of dynamical systems

based on their I/O behavior to simple algebra.

The atomic components of linear I/O systems are linear zero and first order systems. In

particular, signal splitting, integration, gain, and summation (see Fig. 2.2.1) form the basis

of all linear systems. To apply the results of linear systems to synthetic biology, our task is

to implement these basic primitives and describe how they can be physically composed to

obtain any arbitrary linear system.

Component Type Block Diagram State Space Equations Transfer Function

Signal Splitting

u(t) y1 (t)

y2 (t)

_x(t) = 0
y1 (t) = u(t)
y2 (t) = u(t)

Y i (s)
U (s)

= 1

Integration
u(t) 1

s

y(t) _x(t) = u(t)
y(t) = x(t)

Y (s)
U (s)

= 1
s

Gain
u(t)

k
y(t) _x(t) = 0

y(t) = ku(t)
Y (s)
U (s)

= k

Summation
+

u1 (t)

u2 (t)
...
un (t)

y(t)

_x(t) = 0
y(t) = n

i=1 ui (t)
Y (s) = n

i =1 Ui (s)

Figure 2.2.1: Primitive components of continuous time linear I/O systems represented as a block

diagram, state space equations, and frequency space equations.

2.3 Construction of a Chemical Reaction Network from a Linear I/O System
Specification

In this section I describe an intermediate representation of Linear I/O systems that uses sim-

ple, idealized chemical reactions. This level of abstraction requires that notions of signals,

integration, gain, and summation blocks be instantiated. This intermediate representa-

12

tion may then be implemented by a variety of biomolecular engineering frameworks. In

the sequel, one possible implementation is discussed where ideal chemical reactions are ap-

proximated by enzyme-free DNA devices. Throughout this chapter the PI controller [73]

illustrated in Fig. 2.1.1a is used both as a design objective and as a running example.

However, is through be clear that the approach allows for the implementation of any finite

dimensional linear system with chemical reactions (and with DNA devices).

2.3.1 Signals Represented as Chemical Concentrations

A natural representation of a signal within a block diagram might be via the time-varying

concentration of a particular chemical species. However, concentrations can only be non-

negative, whereas signals in arbitrary linear systems take on positive and negative values.

Therefore, a signal u is represented by the difference in concentration between two particular

chemical species. Specifically, for each signal u there are corresponding chemical species u+

and u−.

Remark. I overloaded the symbols u+ and u− so that they represent both time varying

concentrations and the names of a particular chemical species. It should be clear from

the context which usage is intended.

The species u+ and u− are referred to as the positive and negative components of the signal

u, respectively, and the actual value of u equals the difference between its components,

u = u+ − u−. (2.3.1)

One implication of this scheme is that no signal value has a unique representation. For

example, u+ = 100 M and u− = 101 M represents the same signal value as u+ = 0 M and

u− = 1 M.

Definition. The minimal representation of u is defined here as the representation

where u+ = 0 M or u− = 0 M.

13

Forcing signals to be represented minimally would be more efficient in an actual imple-

mentation of this scheme. To accomplish this forcing, the implementations below include

reactions in which the positive and negative components of a signal annihilate each other,

as in Equation (2.3.4).

To allow for blocks to be “wired” arbitrarily, it should be that a block has no retroactive

effect on its input signals [74]. For example, in electrical implementations of I/O systems,

devices are required to draw almost no current from their input signal sources, so that

the meaning of a signal is not changed by the devices using it. One way to satisfy this

notion is to require that signals act as catalysts for the reactions implementing blocks to

which they are wired. In the sequel integration, gain, and summation blocks are shown to be

approximated using a minimal set of reaction types: catalysis, degradation, and annihilation

reactions, given in (2.3.2), (2.3.3), (2.3.4) respectively.

u −⇀−⇀ u+ y (2.3.2)

u −⇀−⇀ ∅ (2.3.3)

u+ + u− −⇀−⇀ ∅. (2.3.4)

2.3.2 Integration

An integration block takes as input a signal u(t) and produces the output signal y(t) =∫ t
0 u(τ)dτ + y(0) with t ∈ R. The transfer function of an integration block is 1/s, as shown

in Fig. 2.2.1. A chemical reaction network that implements this block is as follows,

u±
α−⇀α−⇀ u± + y± (2.3.5)

y+ + y−
η−⇀η−⇀ ∅. (2.3.6)

Where α, γ, η ∈ R+. The block consists of two catalysis reactions (2.3.5) and an annihilation

reaction (2.3.6).

14

Remark. I collapsed two reactions, u+ α−⇀α−⇀ u+ + y+ and u−
α−⇀α−⇀ u− + y−, into reaction

(2.3.5). I will use this notation with both ± and ∓ superscripts for brevity.

The catalysis of u+ and u− at rate α and annihilation of y+ and y− results in the following

mass action equations,

u̇+ = u̇− = 0 (2.3.7)

˙y+ = αu+ − ηy+y− (2.3.8)

˙y− = αu− − ηy+y− (2.3.9)

ẏ = ˙y+ − ˙y− = αu. (2.3.10)

Note that the bimolecular annihilation reaction drives the concentration of chemical species

y+ and y− toward the minimal representation of the signal y, and causes the dynamics of

y+ and y− to be nonlinear. However, the signal dynamics, y = y+ − y−, remain linear due

to the symmetry between ẏ+ and ẏ−.

2.3.3 Gain and Summation

Gain and summation blocks produce output signals that are linear combinations of their

inputs. A gain block takes as input a single signal u(t) and produces the output signal

y(t) = ku(t) where k ∈ R. A summation block takes as input the signals {ui(t)}ni=1,

and produces the output signal y(t) =
∑n

i=1 ui(t). The transfer functions for gain and

summation are Y (s)
U(s) = k and Y (s) =

∑n
j=1 Uj(s) respectively. The following chemical

reaction network that outputs a linear combination of its input signals implements both

gain and summation,

u±i
γki−−⇀γki−−⇀ u±i + y± (2.3.11)

y±
γ−⇀γ−⇀ ∅ (2.3.12)

y+ + y−
η−⇀η−⇀ ∅. (2.3.13)

15

Where ki, γ, η ∈ R+ for i ∈ {1, 2, . . . , n}. In the special case n = 1, this chemical repre-

sentation approximates the gain block in Fig. 2.2.1 for k ≥ 0. For n > 1 this chemical

representation approximates the summation block in Fig. 2.2.1. The chemical reaction net-

work consists of 2n catalysis reactions (2.3.11), two degradation reactions (2.3.12), and one

annihilation reaction (2.3.13). The chemical reaction network gives us the following mass

action equations,

u̇+
i = u̇−i = 0 (2.3.14)

˙y+ = γ

(
n∑
i=1

kiu
+
i − y+

)
− ηy+y− (2.3.15)

˙y− = γ

(
n∑
i=1

kiu
−
i − y−

)
− ηy+y− (2.3.16)

ẏ = γ

(
n∑
i=1

kiui − y
)
. (2.3.17)

For a constant inputs ui, the steady state value of y is,

lim
t→∞

y(t) =

n∑
i=1

kiui. (2.3.18)

The chemical representation can be extended to allow negative multiplicative weights. For

ki < 0, the catalysis reactions (2.3.11) are replaced with

u±
γki−−⇀γki−−⇀ u± + y∓. (2.3.19)

As before, the annihilation reaction drives the concentration of chemical species y+ and y−

toward a minimal representation of the signal y without affecting the dynamics of the signal

y.

2.3.4 Any Linear I/O System can be Approximated with Ideal Chemical Reactions

Although the dynamics of the chemical representations are not equivalent to the dynamics of

integration, gain, and summation, the chemical representations can be used to approximate

16

the dynamics of integration, gain, and summation. As shown in the prequel, the signal

dynamics of the chemical representations are linear systems, which means that they can be

compared the I/O behavior of the chemical implementations to ideal integration, gain, and

summation, through their transfer functions. In particular, increasing the rate parameter γ

for gain and summation results in a closer time-response to ideal gain and summation given

a step input. This result is discussed in more detail in Section 2.4.1. I regard a chemical

representation of a linear I/O system as an approximation of an ideal linear I/O system if

the transfer functions of the two systems can be made equivalent in the limit as the rate

parameter γ goes to infinity. The dynamics of the chemical representation of integration,

gain, and summation are contrasted with the dynamics of the linear block models of these

components in Figure 2.3.1.

Theorem 2.3.1. All finite-dimensional continuous time linear systems can be approx-

imated with catalysis and degradation reactions.

Proof. Equation (2.3.10) shows that in the chemical implementation of integration, the

output signal y is the integral of αu. This results in the transfer function,

Y (s)

U(s)
=

α

s
. (2.3.20)

To produce the integration dynamics described in Fig. 2.2.1, set the rate α = 1 or

compose this system in series with a chemical implementation of gain where k = α−1.

The equivalent dynamics of the chemical representation where α = 1 and an integration

block are illustrated in Fig. 2.3.1a.

The transfer functions for the chemical representations of gain and summation are

computed from Equation (2.3.17),

Y (s) =
γ

s+ γ

n∑
i=1

kiUi(s). (2.3.21)

The result is a first order stable linear system. Shown in Fig. 2.3.1b and Fig. 2.3.1c,

the chemical representation tracks the behavior of the gain block (n = 1) illustrated

17

in Fig. 2.2.1 and weighted summation (n > 1) with zero steady-state error for step

input signal u(t) and square wave input signals u1(t) and u2(t). Increasing γ the I/O

behavior of this system can be made arbitrarily close to the I/O behavior of a weighted

summation,

lim
γ→∞

Y (s) =

n∑
i=1

kiUi(s).

To produce the summation dynamics described in Fig. 2.2.1, set ki = 1 for i = 1, . . . , n.

A similar result follows for the negative weight extension where reactions (2.3.11) are

replaced with reactions (2.3.19) for some set i ∈ I ⊆ {1, . . . , n}.

Because any finite dimensional linear system can be decomposed into integration, gain,

and summation blocks the chemical reaction representation of linear I/O systems can

be used to approximate any finite dimensional linear I/O system. It follows directly

that as γ goes to infinity, the transfer function of an implemented chemical system

approaches that of the ideal specification.

Two details of the ideal chemical reaction model may be particularly concerning when

implementing with biomolecules: First, the rate γ will be physically constrained to some

(very large) finite value. Second, it may be impossible to precisely match reaction rates

between chemical reactions as specified, for example, by the reaction pairs (2.3.11) and

(2.3.12). In simulation, realistic values of γ can produce a time-response close to the specified

system for step inputs, as illustrated in Fig. 2.3.1 and Fig. 2.1.1c for integration, gain, and

summation components as well as the more complicated PI controller. If reaction rates

involving positive and negative components do not match, then for fast annihilation reaction

rates, η, the signal dynamics of the resulting system can be shown to be close to those of

a related linear switch system. These observations and results are detailed in Section 2.4

where the robustness and sensitivity of the construction to different modeling parameters

and chemical disturbances are discussed.

18

(a) Integration

(c) Summation

200 400 600 800 1000 1200
Time, sec.

5. 10 8

1. 10 7

1.5 10 7

Signal

(b) Gain

2000 4000 6000 8000
Time, sec.

1.5 10 8

1. 10 8

5. 10 9

5. 10 9

1. 10 8

1.5 10 8

Signal

DNA model

ideal chemical
reaction network

linear block model

Input
Input

u1

u2

5000 10 000 15 000 20 000
Time, sec.

1. 10 8

5. 10 9

5. 10 9

1. 10 8

Signal

Figure 2.3.1: Step response of the linear block model, chemical reaction representation, and DNA

model of integration, gain, and summation blocks. For each system the input u1 is a square wave.

(a) Integration block. The linear block model follows the trajectory y(t) =
∫ t

0
u1(t). The ideal

chemical reaction representation follows this trajectory precisely. The DNA model drifts from the

ideal chemical reaction trajectory as molecular fuel species are consumed. (b) Gain block. The linear

block model follows the trajectory y(t) = 3u1(t). The chemical reaction representation produces the

correct steady-state output. As with integration, the DNA model closely follows the ideal chemical

reaction trajectory, but drifts as fuel species are consumed. (c) Summation block. The linear block

model follows the trajectory y(t) = u1(t) + u2(t). Given inputs u1 and u2 the output should consist

of four monotonically decreasing steps. The chemical reaction representation follows each step in

steady-state. As before, the DNA model drifts from the ideal chemical reaction representation as

fuel species are consumed.

19

2.3.5 A Simple Optimization: Weighted Integration and Summation

The approximation of a linear system by a chemical reaction network can be made arbitrarily

good by tuning the rate parameter γ. However, as mentioned, in practice it is not possible

to assign arbitrary values to γ. A time response closer to the ideal system may be obtained

by exploiting other parameters and decreasing the order of the chemical reaction model.

For example, a gain composed with an integrator as illustrated in Fig. 2.3.2a is a first

order system. The unoptimized chemical representation (Fig. 2.3.2b) is a second order

system, however this system can be implemented precisely using an optimized first order

weighted integration reaction (Fig. 2.3.2c). Illustrated in Fig. 2.3.2d, given a step input,

the unoptimized representation of this system results in steady-state error (which decreases

as γ increases), while the optimized representation replicates the dynamics of the ideal I/O

system exactly.

In general two other optimizations can be made in the chemical representation: First, the

weighted summation of n signals may be approximated by the second order representation of

n summation and gain reaction sets, or a first order weighted summation reaction network.

Second, the weighted or unweighted summation of n integrated signals may be approximated

by second or third order representation of integration composed with gain (in the weighted

case) and summation reaction sets, or implemented precisely by n weighted integration

reaction sets, all of which share the same output species. In addition to reducing the

overall order and output error of the approximation, these optimizations minimize the total

number of species needed to implement a linear I/O system with catalysis, degradation,

and annihilation reactions. These optimizations are used in the following example.

2.3.6 Example: Ideal Chemical Reaction Network Implementation of a PI Controller

To illustrate the method, the PI controller shown in Fig. 2.1.1a is constructed here. The PI

controller is an example of a closed loop linear system designed to drive the output of the

plant P to a desired set point u. The key feature of the PI controller is that it tracks any

step input u with zero steady-state error for a large class of plants. Such a device could

20

2 4 6 8 10
Time

-0.5

-0.4

-0.3

-0.2

-0.1

Error

optimized

unoptimized

unoptimized

(d)

gain

integration

weighted integration

(a) u x y1
2

1
s

u§ °=2
u§ + x§

x§ ;

x§ 1
x§ + y§

x+ + x¡ ´
;

y+ + y¡ ;

u§ 1 / 2
u§ + y§

° = 1

° = 10

(b) (c)
°

´

Figure 2.3.2: Approximation error for optimized and unoptimized ideal chemical reaction repre-

sentations of the I/O system ẋ = 1
2u, y = x. (a) Block diagram representing the ideal weighted

integration system. (b) Unoptimized chemical reaction representation. This representation consists

of three pairs of signal species, a gain block and an integration block. The signal dynamics re-

sulting from mass action kinetics is a second order linear system. (c) Optimized chemical reaction

representation. This representation consists of two pairs of signal species and a single weighted

integration block. The signal dynamics resulting from mass action kinetics is a first order linear

system that matches the dynamics of the ideal system. (d) Error trajectory for the signal y given

u(0) = u+(0) − u−(0) = 1 and x(0) = y(0) = 0. The unoptimized chemical reaction representation

of the weighted integration system results in some nonzero steady-state error which decreases mono-

tonically as γ increases. The optimized chemical reaction representation results in zero steady state

error.

21

be useful, for example, in regulating a fuel species driving a variety of downstream devices.

Suppose the plant P is realized by leaky expression and chemical devices that produce and

consume the signal species x±5 according to the reactions,

∅
γδ1−−⇀γδ1−−⇀ x±5 (2.3.22)

x±5
γδ2−−⇀γδ2−−⇀ ∅, (2.3.23)

for δ1, δ2 ∈ R+. These disturbances can be used to model leaky expression of signal

molecules, or the retroactive effect of molecular devices the engineer wishes to control.

For now, I claim that the effect of Equations (2.3.22–2.3.23) are captured by the plant

P (s) = (1 + δ2)−1 (this claim is later supported in Section 2.4.3). Note that δ1 does not

appear in this expression as a result of the symmetric effect Equation (2.3.22) has on molec-

ular species x+
5 and x−5 . It is a well known result from control theory that for a step input

u(t), the output of the PI controller is robust to multiplicative plants P (s) [73], meaning

that for any multiplicative plant the controller should track the input signal u(t) with zero

steady-state error.

In general, there are two steps to compiling a biochemical controller from a block diagram.

First, signals in the block diagram are enumerated, and it is determined which signals

correspond to chemical species. Second, primitive blocks are instantiated by sets of chemical

reactions. The PI controller in Fig. 2.1.1a consists of signals u, y, x1,. . . , x5, x6 where u is

the input signal and y = x6 is the output signal. Using optimizations from the prequel, PI

controller is approximated using species u±, x±1 , x±4 , x±5 in the chemical reactions outlined

in Fig. 2.3.3. The signal dynamics of the chemical realization is a second order linear

approximation of the first order PI controller with the following signal dynamics,

ẋ1 = γ(u− x5 − x1) (2.3.24)

ẋ4 = kIx1 (2.3.25)

ẋ5 = γ((kPx1 + x4 + δ1)− (1 + δ2)x5). (2.3.26)

22

Demonstrated in Fig. 2.1.1, this controller produces the stable output limt→∞ y(t) = u(t)

for any step input u(t) when δ1, δ2 ∈ R+. In fact, the chemical realization of the PI

controller with a production and degradation disturbance can track a square wave input

with zero steady-state error. Additionally, as γ →∞, the transient dynamics of the chemical

controller approach those of the ideal PI controller.

Component Ideal Chemical Reactions

Plant

x5 x6
P (s)

∅ γδ1−−γδ1−− x±
5

x±
5

γδ2−−γδ2−− ∅
x±
6 = x±

5

Summation

+
-

u

x6

x1
u± γ−γ− u± + x±

1

x±
5

γ−γ− x±
5 + x∓

1

x+
1 + x−

1

η−η− ∅

Weighted Integration

x1 x4kI
1
s

x±
1

kI−kI− x±
1 + x±

4

x+
4 + x−

4

η−η− ∅
Weighted Summation

+

x1

x4 x5

kP

x±
1

γkP−−−γkP−−− x±
1 + x±

5

x±
4

γ−γ− x±
4 + x±

5

x±
5

γ−γ− ∅
x+
5 + x−

5

η−η− ∅

Figure 2.3.3: PI controller from Fig. 2.1.1a implemented in ideal chemical reactions.

2.4 Robustness and Sensitivity of Modeling Parameters and Disturbances in
the Ideal Chemical Reaction Model

2.4.1 The Role of γ in the Time Domain

In practice the rate γ in summation and gain (Equations (2.3.11–2.3.13)) is bounded by

physical constraints such as binding affinity, reaction temperature, and saturation point.

The steady-state value for gain and summation given a step input is invariant to γ. However,

23

increasing γ for summation and gain given a step input has the effect of driving the system

towards steady-state faster.

Claim 2.4.1. For step input u, the time it takes for the reaction network representing

summation or gain to reach the steady-state value y∗ scales as the inverse of γ.

Proof. Let {ui}ni=1 be a set of constant inputs to a weighted summation chemical reac-

tion network with weights {ki}. The state space equations for this systems are,

u̇+
i = u̇−i = 0

˙y+ = γ

(
n∑
i=1

kiu
+
i − y+

)
− ηy+y−

˙y− = γ

(
n∑
i=1

kiu
−
i − y−

)
− ηy+y−

ẏ = γ

(
n∑
i=1

kiui − y
)
.

Let y∗ be the steady-state value of y. The the dynamics of y have an analytic solution,

y(t) = e−tγ (y(0)− y∗) + y∗.

Let w ∈ (0, 100) denote the percent progress of y(t) to steady state from initial condi-

tions y(0) Given constant set of inputs {ui},

y(t)− y(0) =
w

100
(y∗ − y(0))

0 = (y(0)− y∗)
(
e−tγ +

w

100
− 1
)

t =
1

γ
ln

100

100− w.

Summation and gain blocks are special cases of weighted summation, therefore, for step

input u, the time it takes to reach w% of the steady-state value y∗ scales as the inverse

of γ.

24

2.4.2 Fast Annihilation and Imperfect Rate Matching in the Chemical Realization of Inte-

gration, Gain, and Summation

One potential pitfall of treating each signal as the difference in concentration between two

molecular species is the need to match rate parameters between chemical reactions. For

example, the chemical realization for integration (Equations (2.3.5–2.3.6)) relies on the rate

parameter α to be the same for two separate chemical reactions. Worse yet, the chemical

realization for summation and gain (Equations (2.3.11–2.3.13)) requires both γ and ki to

be the same for multiple reactions, and any difference results in nonlinear signal dynamics.

In practice it may only be possible to guarantee close reaction rates. One solution to this

problem is to require fast annihilation rates η � αγ, ki and annihilation reactions for all

inputs u±. With these requirements the chemical realization for integration is written,

u+ + u−
η−⇀η−⇀ ∅ (2.4.1)

u±
α±−−⇀α
±
−−⇀ u± + y± (2.4.2)

y+ + y−
η−⇀η−⇀ ∅. (2.4.3)

Assuming η � α, the signal dynamics can be approximated as a switched linear system [76]

utilizing time-scale separation [77],

u̇+
i = u̇−i = −ηu+u− ≈ 0 (2.4.4)

ẏ = ˙y+ − ˙y− ≈ α+u+ − α−u− (2.4.5)

≈

 α+u, u > 0

α−u, u ≤ 0.
(2.4.6)

25

Similarly, for summation and gain, the full chemical realization with annihilation is writ-

ten,

u+ + u−
η−⇀η−⇀ ∅ (2.4.7)

u±i
γ±k±i−−−⇀γ±k±i−−−⇀ u±i + y± (2.4.8)

y±
γ±−−⇀γ
±
−−⇀ ∅ (2.4.9)

y+ + y−
η−⇀η−⇀ ∅, (2.4.10)

for i = 1, 2, . . . , n. Assuming η � γ, ki, the signal dynamics can again be approximated as

a switched linear system. For compactness, consider the case n = 1 for the ideal chemical

representation of a gain block,

u̇+
i = u̇−i = −ηu+u− ≈ 0 (2.4.11)

˙y+ = γ+
(
k+u+ − y+

)
− ηy+y− (2.4.12)

˙y− = γ−
(
k−u− − y−

)
− ηy+y− (2.4.13)

−ηy+y− ≈ 0 (2.4.14)

ẏ ≈



γ+(uk+ − y) u > 0 ∧ y > 0

γ+uk+ − γ−y u > 0 ∧ y ≤ 0

γ−(uk− − y) u ≤ 0 ∧ y > 0

γ−uk− − γ+y u ≤ 0 ∧ y ≤ 0.

(2.4.15)

In general linear switched systems are more difficult to analyze than non-switched linear

systems. However, for many stable systems, it is possible to compute bounds the behavior

of the switched linear system in terms of the ideal non-switched linear system. Illustrated

in Fig. 2.4.1, in simulation, the PI controller performs well even under ±10% variation in

reaction rates.

26

50 000 100 000 150 000 200 000 250 000 300 000
Time, sec.

-4. 10 -9

-2. 10 -9

2. 10 -9

4. 10 -9

y

rate-varied chemical
realization

ideal chemical
realization

Figure 2.4.1: Output trajectories from chemical realizations of the PI Controller from Figure 2.1.1.

The ideal chemical realization matches reaction rates between pairs of reactions. Rate-varied chem-

ical realization output trajectories were obtained by varying the reaction rates ±10% from the ideal

reaction rates randomly with a uniform distribution over 50 simulations.

27

2.4.3 The Effect of Production and Degradation of Signal Species on the Chemical Real-

ization of a Linear I/O System

Production and degradation disturbances (described in Equations (2.3.22) and (2.3.23) re-

spectively) model the effect of unregulated chemical devices or leaky expression on a chemi-

cal realization of a linear I/O system. This section discusses the effect of these disturbances

on the output signals for the chemical realizations of integration and weighted summation,

which generalize to weighted integration, summation, and gain reaction networks.

Claim 2.4.2. The effect of a chemical disturbance on the output of an ideal chemical

reaction implementation of integration or weighted integration is equivalent to replacing

the integration with a gain, or weighted integration with a weighted summation.

Proof. The chemical reaction network describing integration with input u and a production-

and degradation-disturbed output y is as follows,

u±
α−⇀α−⇀ y± (2.4.16)

u+ + u−
η−⇀η−⇀ ∅ (2.4.17)

y+ + y−
η−⇀η−⇀ ∅ (2.4.18)

∅
γδ1−−⇀γδ1−−⇀ y± (2.4.19)

y±
γδ2−−⇀γδ2−−⇀ ∅. (2.4.20)

Letting α = kγ, the mass action kinetics of the system can then be written,

u̇+ = u̇− = 0 (2.4.21)

˙y+ = γ(ku+ + δ1 − δ2y
+)− ηy+y− (2.4.22)

˙y− = γ(ku− + δ1 − δ2y
−)− ηy+y− (2.4.23)

ẏ = ˙y+ − ˙y− = γ(ku− δ2y). (2.4.24)

28

The transfer function of this system as γ →∞ is then,

lim
γ→∞

Y (s)

U(s)
=

k

δ2
. (2.4.25)

The resulting transfer function is equivalent to the transfer function for a gain block.

For weighted integration, this result generalizes to the transfer function of weighted

summation.

Claim 2.4.3. The effect of a chemical disturbance on the output of an ideal chemical

reaction implementation of gain or weighted summation is to change the value of the

gain or the value of all of the weights by a factor of (1 + δ2)−1

Proof. The chemical reaction network describing weighted summation with inputs ui

and weights ki (for i = 1, 2, . . . , n), and a production- and degradation-disturbed output

y is as follows,

u±i
γki−−⇀γki−−⇀ y± (2.4.26)

y±
γ−⇀γ−⇀ ∅ (2.4.27)

u+ + u−
η−⇀η−⇀ ∅ (2.4.28)

y+ + y−
η−⇀η−⇀ ∅ (2.4.29)

∅
γδ1−−⇀γδ1−−⇀ y± (2.4.30)

y±
γδ2−−⇀γδ2−−⇀ ∅. (2.4.31)

29

The mass action kinetics of the system can then be written,

u̇+
i = u̇−i = 0 (2.4.32)

˙y+ = γ

(
n∑
i=1

kiu
+
i − (1 + δ2)y+ + δ2

)
− ηy+y− (2.4.33)

˙y− = γ

(
n∑
i=1

kiu
−
i − (1 + δ2)y− + δ2

)
− ηy+y− (2.4.34)

ẏ = γ

(
n∑
i=1

kiui − (1 + δ2)y

)
. (2.4.35)

The transfer function of this system as γ →∞ is then,

lim
γ→∞

Y (s) = (1 + δ2)−1
n∑
i=1

Ui(s)ki. (2.4.36)

The resulting transfer function is equivalent to the transfer function for weighed sum-

mation where all gains ki are decreased by a factor of (1 + δ2)−1. The result applies to

gain blocks as well, since the ideal chemical representation of a gain block is simply a

weighted summation where n = 1.

2.5 Mapping Integration, Summation, and Gain to DNA Strand Displacement
Reactions

The ideal chemical reactions representation of arbitrary linear systems is a useful template

which can be used to guide the implementation of arbitrary linear systems in physical sub-

strates. Choosing a particular biomolecular implementation forces us to consider physical

constraints such as limited supplies of energy-storing fuel molecules and finite maximum

reaction rates.

In enzyme-free DNA reactions, energy can be stored in metastable DNA molecules [1,3,4,78].

Chemical reactions are driven by the transformation of metastable fuel into nonreactive

waste products, and the reaction pathways are programmed through the sequence of nucleic

acids and the availability of single-stranded binding sites, or “toeholds”. Toehold-mediated

30

branch migration and strand displacement reactions are quantitatively well-understood

[7–9], and many complex devices have been constructed around this design principle [1–4].

Recently it was shown that a DNA-based schema built on these design principles may ap-

proximate a large class of unimolecular and bimolecular chemical reactions [10]. Here, I

illustrate and simulate a DNA-based implementation of catalysis, degradation, and annihi-

lation (Fig. 2.5.1), as well as the PI controller introduced in Example I, implemented using

the schema of Soloveichik et al. Details of the implementation, simulations, and condi-

tions under which the implementation may be considered valid are given in Appendix Sec-

tions A.1 and A.2.

Following the notation from Soloveichik et al. [10], in this implementation of chemical re-

action primitives for linear I/O systems set qmax to be the maximum strand displacement

rate and assume qi � qmax. All reactions are entropy-driven with potential energy stored

in fuel species Gi, Ti, Li, Bi, LSi, and BSi. Fuel species are assumed to appear in initial

concentration Cmax. Numbers label domains, which are unique sequences of nucleotides.

In this parameterizing scheme, two labeled domains are complementary if and only if their

labels are x and x∗ respectively. Of note is the domain 1∗q , which denotes a subsequence of

the domain 1∗ with length tuned to the reaction rate qi.

Signal molecules in a given linear system correspond to single stranded DNA made uniquely

addressable via a sequence of three domains on the 5′ end. Signal molecules catalyze the

degradation of fuel species into noninteracting waste molecules. As with any entropy-driven

system the trivial steady-state occurs where the fuel species have degraded into nonreactive

waste. However, in order to approximate the ideal chemical reactions, the operating regime

is limited to where the concentration of fuel species is much greater than the concentration

of signal molecules. As shown in Fig. 2.5.1, the dynamics of the DNA system approach

those of the ideal chemical reaction as Cmax increases.

Fig. 2.5.1a illustrates the production of signal molecule y and degradation of fuels Gi and Ti

catalyzed by the signal molecule u. For large Cmax the concentration y(t) is approximately

the integral of the concentration u(t). Fig. 2.5.1b shows the degradation of fuel species Gi

driven by the presence of signal molecule u. Again, for large Cmax the concentration tra-

31

Response
(a) Catalysis

u
k ik i

u + y

qi = k i
C max

1q*

102 3

11
7

1

102 3 117 1

10 117
8
9

1
2
3

3*

102 3 117 1

? 1 2 3
1q*

? 1 2 3? 1 2 3

10 7 8 9

11 1
2
3

102 3 7
11

1

qi

qmax
v qmax

uu

y

Gi

Ti

0 2000 4000 6000 8000
0

2

4

6

8
Concentration, nM

Time, sec.

(b) Degradation

u
ii

qi = i
C max

? 1 2 3

1q*

122 3

122 3

? 1 2 3
1q*

? 1 2 3 qi

uu

Gi

0 2000 4000 6000 8000
0

2

4

6

8

10
Concentration, nM

Time, sec.

(c) Annihilation

u+ + u¡ ii

i = qmax
2

2 3 4 5 6 13

1*

2 3 4

? 1 2 3 ? 4 5 6

? 1 2 3 5 6 13

4*

5 6 13

? 1 2 3? 1 2 3

? 4 5 6
14*

5 6 14

4*
5 6 14

? 4 5 6? 4 5 6

qmax

qmax

qmax

u+u+

u¡u

LSi BSi

HSi

Li

Hi

Bi

0 2000 4000 6000 8000
0

0.5

1.0

1.5

2.0
Concentration, nM

Time, sec.

u, u+

y

u¡

Ideal CRN
Cmax = 1000
Cmax = 100
Cmax = 10
Cmax = 1

DNA ImplementationIdeal Chemical Reaction

;

;

; ;

;

;

;

;

°

°

´

´

Figure 2.5.1: Ideal chemical reaction, DNA implementation, and signal response for (a) catalysis,

(b) degradation, and (c) annihilation reactions. The domain 1q is a subset of the domain 1. The

initial concentration of fuel species Gi, Ti, Li, Bi, LSi, and BSi are set to Cmax = 1 nM, 10 nM,

100 nM, 1000 nM. For the catalysis and degradation response, u(0) = 1 nM. For the annihilation

response, u+(0) = 1ζ nM, u−(0) = 0.5ζ nM where ζ = 2 is a scaling factor that attenuates for

the initial fast transient where u+ and u− are sequestered in intermediate species. All other initial

concentrations are set to zero.

32

jectory u(t) is approximately exponential decay. Lastly, Fig. 2.5.1c shows the degradation

of fuel species Li and LSi driven by the presence of both u+ and u− molecules. Note that

the dynamics of this reaction can be separated into fast dynamics where u+ and u− are

sequestered in intermediate species through their reactions with Li and LSi respectively,

and slow dynamics where u− degrades into waste through its interaction with the inter-

mediate species that sequestered u+. Since it is the slow dynamics that approximate the

ideal annihilation reaction, the initial concentration of u+ and u− must be scaled to atten-

uate for sequestering effect of the fast dynamics. That is, the initial concentration of all

unregulated signal molecules must be scaled by a factor of two in order to approximate the

ideal chemical reaction network. Again, the approximation of ideal annihilation improves

for large Cmax. Simulations of integration, gain, and summation blocks scaled to realistic

parameters are given in Fig. 2.3.1. Details of the implementation and simulations are given

in Appendix Section A.2.

2.5.1 Example: DNA PI Controller

Here, the PI controller illustrated in Fig. 2.1.1a is implemented with the DNA instantiation

of catalysis, degradation, and annihilation. As with the ideal chemical reaction representa-

tion, the plant P is realized by the chemical reactions (2.3.22–2.3.23). Note that as before,

this disturbance models leaky expression of a signal molecule, and downstream load on the

output signal. This realization is based on the optimized chemical representation shown in

Fig. 2.3.3. The step response of the DNA implementation of the PI controller in the face of

the plant P are shown in Fig. 2.1.1c. Note that as discussed earlier, the unregulated input

u was scaled in order to attenuate the sequestering effect of the annihilation reaction. Note

that the output trajectory of the DNA implementation of the PI controller closely matches

the output trajectory of the ideal chemical reaction implementation discussed in Example

I at the beginning of the simulation, tracking the input u with near zero steady-state error.

The drift away from zero steady-state error as time increases is due to the consumption of

finite fuel molecules modeled in the DNA implementation. Details of the implementation

and simulation are given in Appendix Section A.3.

33

2.6 Discussion

I demonstrated a method for realizing arbitrary linear I/O systems at two levels of ab-

straction: 1. an intermediate chemical reaction representation, and 2. a proposed DNA

implementation. The intermediate chemical reaction representation of linear I/O systems

provides a template for implementation using arbitrary biomolecules. Notably our con-

struction of linear I/O systems relies on only three types of chemical reactions: catalysis,

degradation, and annihilation.

Although an implementation of linear I/O systems using DNA has been explored in some

depth, one could imagine an implementation of these reactions using a variety of different

substrates: gene regulatory networks, MAPK cascades, or some combination of these sys-

tems [19, 20, 79–82]. The DNA implementation provides a specific avenue for composing

existing DNA devices, and case study with which to examine experimental considerations

such as finite chemical concentrations, realistic reaction rates, unmodeled chemical reac-

tions, and data collection.

2.7 Methods

All simulations are performed in Mathematica, Version 7.0.1.0 [83], with numerical solver

NDSolve. Mathematica files are available upon request. Specific details of the ideal chem-

ical realization and DNA implementation of linear I/O primitives as well as the PI con-

troller, including chemical reaction network models and reaction rates, are given in Ap-

pendix A.

34

Chapter 3

A FRAMEWORK FOR IMPLEMENTING FINITE STATE
MACHINES IN GENE REGULATORY NETWORKS

An engineering framework for finite state machines (FSMs) in living cells is crucial scien-

tifically and practically. Naturally occurring finite state machines control how cells switch

states from stem cells to tissue specific cells according to chemical, mechanical, and logical

cues from their local environments [84–87]. However, many questions remain unanswered:

How is state encoded by patterns of gene expression? How are states stabilized to avoid

spontaneous switching? How do state-specific signals reliably cause transitions between

states? Most importantly, can a synthetic biologists build novel finite state machines in

synthetic cells that control the process of differentiation and development? Here, I illus-

trate a general approach for designing and building finite state machines in living cells.

The design method is rooted in the rich theory of finite state machines and sequential logic

from computer engineering [29, 46]. I apply the method to a variety of examples modeled

at different levels of detail and abstraction: as a Boolean network representation of a gene

regulatory network (GRN), as delay differential equations (DDEs) modeling a biomolecu-

lar implementation of the GRN, and finally as a 2D multicellular simulation illustrating

a complex microcolony edge detection behavior implemented from a high-level finite state

machine specification.

3.1 Finite State Machines

Finite state machines are a well understood and intuitive model of state control and com-

putation. A finite state machine is specified by the tuple,

M = (Q,Σ, δ, q0, F), (3.1.1)

35

where Q and Σ are finite sets, δ : Q×Σ→ Q, q0 ∈ Q, and F ⊆ Q. Q is a set of states, Σ is

a set of input symbols, q0 is the unique start state, δ is a state transition function, and F is

a (possibly empty) set of accepting states. Finite state machines are typically represented

as a directed graph. For example, Figure 3.1.1A depicts a two-state FSM. The set of states

Q = {0, 1} are represented by labeled vertexes. The start state q0 = 0 is denoted by the

“start” arrow, and the set of accepting states F = {1} are illustrated as a double-circled

vertex. Edge labels denote the full set of inputs Σ = {a, b}. The state transition map δ

is represented by edges labeled with a list of input symbols that move the FSM between

states.

The semantics of a finite state machine is then a set of rules defining its operation specified

by M . The FSM takes as input a sequence of symbols w ∈ Σ∗ (where Σ∗ is the Kleene

operator applied to Σ), and determines weather or not the sequence is in a set of accepted

sequences through a series of state transitions. The FSM begins in the initial state q0.

Given a sequence of inputs w = σ1σ2 . . . σn with σi ∈ Σ for i = 1, 2, . . . , n, the first state

the machine transitions to is q1 = δ(q0, σ1). The kth state the FSM transitions to is then

qk = δ(qk−1, σk). The w is an accepted sequence if qn ∈ F . If qn /∈ F or if for some k,

δ(qk−1, σk) is not defined, the FSM does not accept w. In other words, w is accepted if

and only if there is a path through the graph induced by M that begins at q0 and ends at

qn ∈ F where consecutive edges in the path have labels that contain σ1, σ2, . . . , σn.

In the sequel, I present a general method for constructing a GRN with a small number

of component types to realize an arbitrary FSM specification. The method is illustrated

through example, using the two-state machine in Figure 3.1.1, and show how the Boolean

network model of the GRN implements the two-state FSM. Additionally, I show that a

biomolecular realization of the GRN modeled by DDEs closely approximates the Boolean

network dynamics for a wide range of physically realistic parameters. Finally, I demonstrate

how finite state machines can be used to engineer complex multicellular behaviors with a

bacterial microcolony edge detection example simulated in gro [42].

36

0

start

1b

a

a

b

Q = {0, 1}
Σ = {a, b}
F = {1}
q0 = 0

δ(0, a) 7→ 1

δ(0, b) 7→ 0

δ(1, a) 7→ 1

δ(1, b) 7→ 0

A.

R0

I

III

Sa

Ø

a

I

II

III

Ta0

I

III

Sb

Ø

b

I

II

III

Tb0

I

III

Ta1

I

III

Tb1

I

III

R1

I

III

STARTC.

B.

Sb

Sa

a Ta0 Ta1

b Tb1Tb0

R0 R1

START

Figure 3.1.1: Simple two-state machine described as (A) a directed graph representation of a finite

state machine, (B) a gene regulatoy network made of repressing transcription factors and inducers,

and (C) a biomolecular realization of the same GRN using the parts described in Figure 3.2.1. In the

GRN representation orange circles denote transition species, purple circles denote state species, and

green circles denote sensor species. In the GRN and biomolecular realization, the gene network is in

state i when species Ri is at a low level expression, and following transition δ(q, σ) when transition

species Tσq is at a high level of expression.

37

3.2 Modeling Gene Regulatory Networks

Gene regulatory networks are specified by the tuple,

G = (GV , GU) (3.2.1)

GV = (V,Er, Ea) (3.2.2)

GU = (U, Ir, Ia), (3.2.3)

where GV is a internal gene network graph, and GU is a signal graph. In GV , V is a finite

set of gene products, Er ⊆ V × V is a repression relation, and Ea ⊆ V × V is an activation

relation. In GU , U is a finite set of input signals, Ir ⊆ U×(V ∪Er∪Ea) is a signal repression

relation, and Ia ⊆ U×(V ∪Er∪Ea) is a signal activation relation. Gene regulatory networks

are typically represented as a directed graph, where V and U are sets of vertexes, Er and

Ea are directed repression and activation edges connecting nodes in V , and Ir and Ia are

directed signal repression and signal activation edges connecting nodes in U to nodes or

edges in GV . For example, in Figure 3.1.1B, green, orange, and purple circles denote gene

products, and START, a, and b denote input signals to the network. Repression edges that

connect nodes denote repression relations between those gene products. For example, the

edge connecting R0 to Ta0 indicates that R0 represses the production of Ta0. Some signal

repression edges connect nodes to other edges, for example, a signal repression edge connects

a to the edge between Sa and Ta0. This denotes a biomolecular reaction where signal a

prevents Sa from repressing Ta0. These directed graphs provide a high level description of

the relationship between genes and input signals in a regulatory network.

Remark. For simplicity of interpretation and implementation, I am mainly concerned

with gene networks made of only repressing relations, and will specify these networks

as

G = (V,Er, U, Ir), (3.2.4)

where Ea and Ia are empty and therefore not shown.

38

3.2.1 Biomolecular Parts

Specific biomolecular parts can be used to implement high level GRN specifications. Fig-

ure 3.2.1 illustrates a class of parts for transcription regulation and small molecule sensing

that will be used throughout this paper. Our goal here is simply to show what a minimal

set of parts can do. It will become apparent that the parts used could be replaced with

similar parts, or that the designs I propose could be made more robust or efficient.

A.
Constituitive

Core promoter

Trans. regulated

DNA binding

sequences

B.
Transriptional

repression

domain

I.

Small molecule

recognition site/

degron

II.

Programmable

DNA binding

domain

III.

Ø

Sensed molecule

I

II

III

I

III

I

III

Fluorscent

marker

Figure 3.2.1: Biomolecular parts for realizing finite state machines: (A) Transcriptionally reg-

ulated and unregulated promoters. Transcriptionally regulated promoters have specific DNA se-

quences illustrated as blue bars that may be bound by domain III on a repressing transcription fac-

tors. Transcriptionally unregulated promoter is nominally “on”. (B) Transcription factors are made

of three primary components: a transcriptional repression domain; an optional signaling molecule

binding site; and a programmable DNA binding domain. Sensed molecules are small diffusable

signaling molecules that bind to recognition sites (i.e. a degron) in programmable transcription fac-

tors, and catalyze degradation of the transcription factor. Also illustrated is a fluorescently labeled

transcription factor, which we use to distinguish “state” proteins from “transition” proteins.

I consider gene networks made of promoters, small diffusable signal molecules, and repress-

ing transcription factors with programmable DNA binding domains. Figure 3.2.1a shows

two varieties of promoters: constitutive and transcriptionally regulated. Constitutive pro-

39

moters are always “on”, expressing their associated gene product at some nominal level.

Transcriptionally regulated promoters contain one or more specific DNA binding sequences

upstream of a core promoter. I consider transcriptionally regulated promoters that are

nominally “on” unless bound by one or more repressing transcription factors.

Figure 3.2.1b shows several transcription factors made by fusing two or three functional

domains: a transcriptional repression domain (I); a degron domain (II); a DNA binding

domain (III). The construction of such transcription factors is now routine [52, 65, 66, 88,

89]. All transcription factors considered here contain domains I and III, and special signal

sensing transcription factors contain domain II. Transcription factors might be fluorescently

labeled, and for clarity, this labeling is used to distinguish “state” transcription factors from

“transition” transcription factors. Small signal molecules (represented as small circles) bind

to and catalyze the degradation of specific “sensor” transcription factors. Signals may be

inducers or cell-cell signaling molecules that can be enzymatically produced, and exported

by the cell and other cells or supplied exogenously. In this way, signals may be applied

exogenously as input to a GRN or produced internally as an intercellular communication

medium in multicellular systems.

In Figure 3.2.2 I depict biomolecular realizations and corresponding gene regulatory net-

works for the four types of components that are interconnected to construct finite state

machines: the transcriptionally unregulated gene, the singly regulated gene, the doubly regu-

lated gene, and the small molecule sensor. The first three components represent motifs for

gene regulation via repressing transcription factors, while the fourth component will be used

to sense a small input signal molecule. The biomolecular parts shown in Figure 3.2.1 and

networks made from the composition of these parts can be modeled as Boolean networks,

as illustrated in Figure 3.2.2. This is just one possible way to implement gene regulatory

networks, and there are certainly others. For example, a similar implementation can be

imagined with CRISPR transcription factors [60]. Now that I have defined the syntax

of gene regulatory networks and a set of biomolecular parts to model, I will use Boolean

network dynamics and delay differential equations to provide semantic interpretation as

dynamical systems.

40

Component

Type

GRN Boolean Network

Equations

Delay Differential EquationsBiomolecular

Realization

Transcriptionally

Unregulated

Gene

Y Y t = on
d

dt
Y (t) = Vmax − βY (t)

Y
Y

Doubly

Regulated

Gene U
1

U
2

Y
Y t+1 = ¬(U t

1 ∨ U t
2)

U
1

Y

I

III

U
2

I

III

Y

Singly

Regulated

Gene
U Y Y t+1 = ¬U t

Y

U I

III
Y

Small

Molecule

Sensor S
a

Y

a
St
a = ¬at

Y t+1 = ¬St
aØ

a

I

II

III

Y

S
a

Y

S
a

Figure 3.2.2: Components of a biomolecular realization of finite state machines, represented as a

GRN, Boolean network equations, and delay differential equations. In the delay differential equation

representation, τ denotes the delay associated with transcription and translation, β is the rate of

dilution associated with cell growth, and Vmax is the maximum rate of production of a gene product.

The delay differential equations follow a Michaeles-Menten form where k1/2 and n are the Michaeles

constant and Hill coefficient respectively.

41

3.2.2 Boolean Network Model

The Boolean network model of gene regulation is a discrete time dynamical system used

to model course-grained dynamics of gene expression [90, 91]. Boolean networks were first

introduced in this application to investigate the dynamics of randomly generated gene reg-

ulatory networks, and have been used successfully as a descriptive tool, and more recently

(and perhaps surprisingly) as a predictive model of gene regulatory network dynamics in

natural and synthetic systems [92–96]. In a Boolean network, the expression level of each

gene product or input to the network is in one of two states: on and off, (or true and

false) denoting high or low expression level respectively. For brevity, define the domain

B , {on, off }. Boolean states are updated at discrete times, and the expression level of a

gene product at time t+1 is a Boolean function of the expression level of gene products that

affect it at time t. In general, for gene products Y1, Y2, . . . , Yn and inputs U1, U2, . . . , Um,

I denote the state of the gene products and inputs at time t as Y t
1 , Y

t
2 , . . . , Y

t
n ∈ B and

U t1, U
t
2, . . . , U

t
m ∈ B respectively. The dynamics of this network can then be written,

Y t+1
1 = f1(Y t

1 , Y
t

2 , . . . , Y
t
n, U

t
1, U

t
2, . . . , U

t
m) (3.2.5)

Y t+1
2 = f2(Y t

1 , Y
t

2 , . . . , Y
t
n, U

t
1, U

t
2, . . . , U

t
m) (3.2.6)

... (3.2.7)

Y t+1
n = fn(Y t

1 , Y
t

2 , . . . , Y
t
n, U

t
1, U

t
2, . . . , U

t
m), (3.2.8)

where fi : Bn+m → B is some Boolean update function for i = 1, 2, . . . , n.

Remark. For simplicity, I use the same symbol for the name of the gene product

and the time-varying state of the gene product. Additionally, I name genes without

subscripts, and gene products and time-varying state with subscripts. In general, the

meaning of these symbols should be clear from context.

In the Boolean network model, the update function fi typically corresponds to a mechanistic

model of transcriptional regulation. In the networks considered in this text, all transcription

factors are repressing, and all promoters are nominally “on” unless bound by some repressing

42

transcription factor. This means the transcriptionally unregulated gene motif in Figure 3.2.2

always expresses its gene product. The Boolean network dynamics for the transcriptionally

unregulated gene encodes the sequential logic for true,

Y t+1 = on. (3.2.9)

In the singly regulated gene shown in Figure 3.2.2, the input U is a repressing transcription

factor with a DNA binding domain that binds to and represses transcription of gene Y,

preventing expression of gene product Y . The Boolean network dynamics for the singly

regulated gene encodes the sequential logic for NOT,

Y t+1 = ¬U t. (3.2.10)

In other words, gene product Y is on unless the input U was present at the previous time

step. Similarly, the doubly regulated gene in Figure 3.2.2, has two inputs U1 and U2 that

may each bind to and repress transcription of gene Y. The Boolean network dynamics for

the doubly regulated gene encodes the sequential logic for NOR,

Y t+1 = ¬
(
U t1 ∨ U t2

)
, (3.2.11)

meaning the output Y is on unless input U1 or input U2 was present at the previous time

step. Finally, the small molecule sensor in Figure 3.2.2 is a two-gene component that makes

use of two additional parts from Figure 3.2.1: a signal molecule a, and a transcription factor

Sa that contains the degron domain (II) that is sensitive to a. The transcription factor Sa

is transcriptionally unregulated, and in the absence of signal a, Sa binds to the upstream

binding sequence of gene Y and prevents expression of gene product Y (same as the singly

regulated gene). However, in the presence of a, the signal molecule quickly binds to Sa and

catalyzes its degradation through fast protein-protein interactions. The resulting absence

of Sa allows gene product Y to be expressed. This interaction is denoted in the GRN in

Figure 3.2.2 by a repression arrow pointing from a to the repression arrow connecting Sa

to Y. Here, at is said to be an input to the network. Since the interaction between Sa and

43

a is much faster than gene expression, the state Sta can be approximated as a function of

at,

Sta = ¬at. (3.2.12)

The Boolean network dynamics of the small molecule sensor component are then,

Y t+1 = ¬St (3.2.13)

= at. (3.2.14)

The advantage of a Boolean network model is that it allows for the complete enumeration of

the state space, which is used later to show that for any FSM a Boolean network can be con-

structed from the components in Figure 3.2.2 such that the dynamics of the Boolean network

are isomorphic to the transition function of the FSM. The disadvantage of such a model is

that it may make unrealistic simplifying assumptions, and lacks the fidelity of a continuous

system such as a network modeled by Hill functions or chemical reaction networks. For this

reason, I also consider a delay differential equation model of gene expression.

3.2.3 Delay Differential Equation Model

There are some questions that cannot be addressed assuming the Boolean network model.

Gene expression levels are in general not binary, and depend on factors such as binding

affinities of DNA binding domains, and dilution as a result of cell growth and division.

Ultimately any model of a gene regulatory network depends on the specific biomolecular

components used to implement the system. However it is useful to consider a simple continu-

ous model to examine how well a motif for implementing finite state machines approximates

the discrete Boolean network model under various kinetic parameters. To this end, DDEs

and Hill equations [93, 97] are used to model the dynamics of gene product concentrations

in the components outlined in Figure 3.2.2. Notably, I will make the following simplifying

assumptions about the gene network: all regulated and unregulated genes are built around

44

the same core promoter, all gene products have the same nominal rates of translation and

transcription, all proteins have approximately the same rate of nominal dilution and degra-

dation, and all transcription factors have similar binding affinities and cooperativity. These

are reasonable design assumptions that greatly reduce the number of parameters in the

model.

The DDE for the transcriptionally unregulated gene in Figure 3.2.2 is,

d

dt
Y (t) = Vmax − βY (t), (3.2.15)

where Y (t) ∈ R is the time-varying concentration of gene product Y , and Vmax ∈ R and

β ∈ R are tunable parameters to the model. Vmax is the rate of transcription and translation

of gene Y, and β denotes the cumulative rate dilution due to cell growth and nominal protein

degradation. In steady state,

lim
t→∞

Y (t) =
Vmax
β

. (3.2.16)

The DDE for describing the dynamics of the singly regulated gene component in Figure 3.2.2

is,

d

dt
Y (t) =

Vmax

1 +
(
U(t−τ)
k1/2

)n − βY (t). (3.2.17)

The first term in this DDE takes the form of a Hill function. As before, Vmax is the maximum

unregulated rate of transcription, and β is a cumulative diffusion and nominal protein

degradation rate. In addition, U(t) ∈ R is the time-varying concentration of repressing

transcription factor U , and k1/2 ∈ R, n ∈ R and τ ∈ R are three new tunable parameters.

k1/2 is the concentration of U(t) required to half the rate of transcription of gene Y, and

n is the Hill coefficient for repression. τ denotes the time delay from transcription of a

gene to translation of the gene product. Similarly, the DDE for the doubly regulated gene

45

component is,

d

dt
Y (t) =

Vmax

1 +
(
U1(t−τ)+U2(t−τ)

k1/2

)n − βY (t). (3.2.18)

This is the same as Eq. (3.2.17) for the singly regulated gene, except that here the time-

delayed concentration of both repressing transcription factors U1 and U2 are summed in the

Hill function. This assumes that both U1 and U2 bind to the same DNA binding sequence,

and have identical effects on the transcription of gene Y. Finally, two equations model the

dynamics of the small molecule sensor in Figure 3.2.2,

d

dt
Sa(t) = Vmax − (β + kpa(t))Sa(t) (3.2.19)

d

dt
Y (t) =

Vmax

1 +
(
Sa(t−τ)
k1/2

)n − βY (t). (3.2.20)

Eqs. (3.2.15) and (3.2.19) captures the dynamics of production and degradation of sensor

molecule Sa via signal molecule a. As before, Vmax is the maximum rate of production of

Sa and β is the cumulative rate of diffusion and nominal degradation. Additionally, Sa is

degraded through fast protein-protein interactions catalyzed by signal a. The kinetics of

these reactions are lumped into a single rate parameter kp. Eq. (3.2.20) then models the

production of output molecule Y regulated by repressing transcription factor Sa just as with

the singly regulated gene in Eq. (3.2.17).

3.3 General Construction of a GRN from an FSM Specification

To implement an FSM with a GRN, I define states and input symbols in terms of the parts

and components illustrated in Figures 3.2.1 and 3.2.2. A natural choice is to represent a

state in the FSM with a particular gene expression level or set of gene expression levels,

and represent input symbols with the presence or absence of signal molecules that alter the

gene expression level. A sequence of input symbols could then be encoded as a trajectory

over signal concentrations. The GRN implementation of a FSM then acts as a sequence

recognizer, and the notion of an accepting state encodes the logic for recognizing a particular

46

set of trajectories over input signals. Specifically, beginning with the FSM,

M = (Q,Σ, δ, q0, F), (3.3.1)

the gene regulatory network

(V,Er, U, Ir) = g(M), (3.3.2)

is generated where V is the set of gene products in the network, Er describes how the

proteins in V are “wired” together as a GRN, U is the set of input signals to the network,

and Ir describes how the signal molecules affect transcription of the genes in V .

Inputs to the network are a set of signal molecules Σ and an inducible repressing transcrip-

tion factor START,

U = Σ ∪ {START}. (3.3.3)

Every gene in the network encodes a repressing transcription factor, and these can be broken

into three categories: state genes, transition genes, and sensor genes. For clarity, I name all

the state genes “Rq” where q is the name of state in the FSM. The state genes are defined

as a set of singly repressed genes,

VR = {Rq | ∀q ∈ Q}. (3.3.4)

Similarly, I prefix the names of all transitions genes with a “T”. The transition genes are a

set of doubly repressed genes,

VT = {Tσq | ∀q ∈ Q, σ ∈ Σ s.t. ∃δ(q, σ)}. (3.3.5)

For q, q′ ∈ Q and σ ∈ Σ, I consider the GRN to be following transition δ(q, σ) 7→ q′ when

Tσq is at a high level of expression and all other transition genes are at a low level of

expression.

47

Finally, all the sensor gene names are prefixed with a “S”. Sensor genes are a set of tran-

scriptionally unregulated genes,

VS = {Sσ | ∀σ ∈ Σ}, (3.3.6)

where each signal molecule σ binds uniquely to the sensor transcription factor Sσ. For

σ ∈ Σ, I consider the symbol σ to be applied to the machine when the signal molecule σ is

present.

The repression edges Er are then made up of edges between genes. Specifically, let ER,T be

the set of repression edges from state genes to transition genes. For each state q ∈ Q, state

gene Rq represses transition genes Tσq for all σ ∈ Σ.

ER,T = {(Rq,Tσq) | ∀Rq ∈ VR,Tσq ∈ VT }. (3.3.7)

Let ET,R be the set of repression edges from transition genes to state genes. To encode

the transition function, for all q, q′ ∈ Q and σ ∈ Σ where δ(q, σ) 7→ q′, transition gene Tσq

should repress state gene Rq′.

ET,R = {(Tσq,Rq) | ∀Tσq ∈ VT ,Rq ∈ VR}. (3.3.8)

Let ES,T be the set of repression edges from sensor genes to transition genes. For each input

symbol σ ∈ Σ, sensor gene Sσ represses transition genes Tσq for all q ∈ Q.

ES,T = {(Sσ,Tσq) | ∀Sσ ∈ VS ,Tσq ∈ VT }. (3.3.9)

Let IΣ,S be the set of repression edges from signal molecules in Σ to the edges in ES,T ,

IΣ,S = {(σ, (Sσ, Tσq)) | ∀σ ∈ Σ, (Sσ, Tσq) ∈ ES,T }. (3.3.10)

48

Finally, encoding the start state q0, START should repress start gene Rq0. Then for

(V,Er, U, Ir) = g(M),

V = VR ∪ VT ∪ VS (3.3.11)

Er = ER,T ∪ ET,R ∪ ES,T (3.3.12)

U = Σ ∪ {START} (3.3.13)

Ir = IΣ,S ∪ {(START,Rq0)}. (3.3.14)

3.3.1 Boolean Network Model of the General Construction

In general, the Boolean network equations for a sensor gene Sσ and a transition gene Tσq

are,

Stσ = ¬σt (3.3.15)

T t+1
σ,q = ¬

(
Rtq ∨ Stσ

)
, (3.3.16)

where Stσ, T tσ,q, and Rtq denote the Boolean value of the sensor gene, transition gene, and

state gene respectively at time t. There are two forms of the equation describing the

dynamics of each state gene Rq. When q 6= q0,

Rt+1
q = ¬

∨
{(q′,σ)|δ(q′,σ) 7→q}

T tσ,q′ (3.3.17)

and when q = q0,

Rt+1
q = ¬

 ∨
{(q′,σ)|δ(q′,σ) 7→q}

T tσ,q′

 ∨ STARTt

 . (3.3.18)

49

In the absence of any inputs σ ∈ Σ and a low expression of START, the network reaches

steady-state in two time steps. The expression level at steady state is,

Stσ = on (3.3.19)

T tσ,q = off (3.3.20)

Rtq = on, (3.3.21)

for all σ ∈ Σ and q ∈ Q. At steady state, the network is not in any state of the FSM, nor

is it following any transitions.

In the Boolean network framework, an input sequence to the FSM is encoded as a trajectory

over signal molecules and the START gene activity. Let the set of input symbols Σ =

{σ1, σ2, . . . , σn}, and let w = σc1σc2 . . . σcm ∈ Σ∗ be an input string to the FSM M where

the index ci ∈ {1, . . . , n} for i = 1 . . .m. In the Boolean network model of the GRN g(M),

the sequence w specifies an input trajectory ut = hBN (w, t) for t ∈ N, defined as

hBN (w, t) =



START t

σt1

σt2
...

σtn


(3.3.22)

where,

START t =


on, t ∈ {0, 1}

off , otherwise,

(3.3.23)

and for each σtj with j ∈ {1, 2, . . . , n},

σtj =


on, ∃ci s.t j = ci and t ∈ {2i, 2i+ 1}

off , otherwise.

(3.3.24)

50

Exactly one signal or the START gene is active at any particular time. The START gene

is on for two time steps (i.e. from t = 0 through t = 1). Immediately following the START

pulse, each signal σci (for i = 1, 2, . . . ,m) is on in sequence for two time steps. An example

trajectory is shown in Figure 3.3.1, and discussed later in detail.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Tb,1

Ta,1

Tb,0

Ta,0

R1

R0

b

a

START

Expression

Time
Input Boolean Network

State DDEs, V
max

=20, n=2

Transition DDEs, V
max

=100, n=2.5

Figure 3.3.1: Boolean network and DDE trajectories for the two-state FSM from Figure 3.1.1.

In this simulation, τ = 1, n = 2, Vmax = β = 20, k1/2 = 0.2, kp=200. Solid lines denote Boolean

network trajectories and dotted lines denote DDE trajectories. The top three plots show the input

trajectories of a, b, and START that encode the sequence “aabba”. The control input for the Boolean

network and DDE model are identical. The middle two plots show to the expression level of state

genes R0 and R1 where low expression of Ri corresponds to being in state i of the FSM. The bottom

four plots illustrate the expression level of transition genes Ta0, Tb0, Ta1, and Tb1, where high

expression of Tσq denotes the transition δ(q, σ) in the FSM.

51

3.3.2 DDE Model of the General Construction

Similarly, the dynamics of a biomolecular realization of sensor and transition genes can be

written as a system of DDEs. Where σ(t) is the concentration of signal molecule σ at time t,

and Sσ(t), Tσ,q(t), Rq(t), and START (t) are the concentrations of sensor, transition, state,

and “start” transcription factors respectively,

d

dt
Sσ(t) = Vmax − (β + kpσ(t))Sσ(t) (3.3.25)

d

dt
Tσ,q(t) =

Vmax

1 +
(
Sσ(t−τ)+Rq(t−τ)

k1/2

)n − βTσ,q(t), (3.3.26)

for each σ ∈ Σ and q ∈ Q. As with the Boolean network representation, there are two forms

of the DDE describing the dynamics of a state gene. When q 6= q0,

d

dt
Rq(t) =

Vmax

1 +
(
START (t−τ)+

∑
(q′,σ)|δ(q′,σ)7→q Tσ,q′ (t−τ)

k1/2

)n − βRq(t). (3.3.27)

When q = q0,

d

dt
Rq(t) =

Vmax

1 +
(∑

(q′,σ)|δ(q′,σ)7→q Tσ,q′ (t−τ)

k1/2

)n − βRq(t). (3.3.28)

In general, the steady-state of this system of DDEs can be solved for numerically given the

control inputs Sσ(t) = 0 ∀σ ∈ Σ and START (t) = 0. The steady state of the DDEs qualita-

tively reflect the steady state of the Boolean network for a large range of parameters.

52

As with the Boolean network model, an input sequence to the FSM is encoded as an input

trajectory u(t) = hDDE(w,∆t, t) for t ∈ R and pulse width ∆t ∈ R, defined as,

hDDE(w, t) =



START (t/∆t)

σ1(t/∆t)

σ2(t/∆t)
...

σn(t/∆t)


(3.3.29)

(3.3.30)

where,

START (t) =


1, t ∈ [0, 1)

0, otherwise

(3.3.31)

(3.3.32)

and for each σj with j ∈ {1, 2, . . . , n}

σj(t) =


1, ∃ci s.t. j = ci and t ∈ [2i, 2i+ 1)

0, otherwise.

(3.3.33)

As with the Boolean network model, exactly one signal or the START gene is active at any

given time. Here, ∆t controls for the input signal pulse width, typically taken to be ∆t ≥ τ .

In 4, the pulse width ∆t = τ , making the sample input trajectory for the DDE model match

the input to the Boolean network.

3.3.3 Example: Two-state Machine as a Boolean Network

As an example, Figure 3.1.1A depicts a simple two-state FSM represented as a directed

graph, along with a GRN implementation and a biomolecular realization of the same ma-

53

chine. This machine has two states, Q = {0, 1}. The FSM begins in state q0 = 0, and

from here two transitions a possible. If the next input symbol is an “a”, then the machine

moves to state 1; however, if the next input symbol is a “b”, then the machine stays in state

0. Conversely, from state 1, an “a” leaves the machine in state 1, while a “b” moves the

machine back to state 0. Since the set of accepting states F consists only of state 1, this

FSM accepts all sequences of “a” and “b” that end in an “a”.

In the GRN implementation in Figure 3.1.1B, the state 0 is represented by the low expression

of gene R0, and the state 1 is represented by the low expression of gene R1. Modeled as a

Boolean network, the equations describing the dynamics of this GRN are,

Rt+1
0 = ¬

(
T tb,0 ∨ T tb,1 ∨ STARTt

)
(3.3.34)

Rt+1
1 = ¬

(
T ta,0 ∨ T ta,1

)
(3.3.35)

T t+1
a,0 = at ∧ ¬Rt0 (3.3.36)

T t+1
b,0 = bt ∧ ¬Rt0 (3.3.37)

T t+1
a,1 = at ∧ ¬Rt1 (3.3.38)

T t+1
b,1 = bt ∧ ¬Rt1. (3.3.39)

Figure 3.3.1 shows the Boolean network and DDE trajectories for this GRN given the input

sequence “aabba”. In the Boolean network, the initial high expression of START at time

t = 0 through t = 1 results in a low expression of R0 during time t = 1 through t = 2,

denoting the state q0 = 0 in the FSM. Since every transition gene Tσq is repressed by

both state gene Rq and sensor gene Sσ, low expression of Rq at time t means that the

expression level of Tσq at time t + 1 is sensitive to signal σ at time t. Specifically, from

Eqs. (3.3.34–3.3.39), when R0 is off,

T t+1
a,0 = at (3.3.40)

T t+1
b,0 = bt. (3.3.41)

54

When the signal a is present at time t = 2, repression is temporarily relieved on transition

gene Ta0 at time t = 3. The high expression of Ta0 indicates transition δ(0, a) in the FSM.

In general, the presence of an input signal coinciding with the repression of a state gene

determines which transition gene will be active at the following time step. Transition gene

Ta0 represses state gene R1 (state 1 in the FSM) at time t = 4, leaving transition genes Ta1

and Tb1 sensitive to signal molecule a. Since signal a is still active at time t = 4, Ta1 is

expressed at time t = 5 and R1 is again repressed at time t = 6 (in the FSM, δ(1, a) 7→ 1).

This process is repeated for the subsequent long pulse of signal b and short pulse of signal

a (encode two “b” input symbols followed by an “a”). After the final pulse of signal a is

supplied, the GRN arrives in the final accepting state, and R1 is repressed at time t = 12.

In this example the transition function δ was defined for all combinations of input symbols

and states; however, as will be shown in Section 3.4, if the simulation were to continue

absent of input signals, or if an input symbol was provided that did not correspond to a

valid transition, the Boolean network model of this GRN would return to its initial steady

state in two time steps.

3.3.4 Example: Two-state Machine as a System of DDEs

As mentioned previously, gene expression levels are, in general, not binary. In order to

assess continuous effects such as production, dilution, and degradation rates, and binding

affinities, the GRN can be modeled as a system of delay differential equations. The equa-

tions describing the continuous dynamics of the biomolecular realization in Figure 3.1.1C

55

are,

d

dt
Sa(t) = Vmax − (β + kpa(t))Sa(t) (3.3.42)

d

dt
Sb(t) = Vmax − (β + kpb(t))Sb(t) (3.3.43)

d

dt
Ta,0(t) =

Vmax

1 +
(
Sa(t−τ)+R0(t−τ)

k1/2

) − βTa,0(t) (3.3.44)

d

dt
Tb,0(t) =

Vmax

1 +
(
Sb(t−τ)+R0(t−τ)

k1/2

) − βTb,0(t) (3.3.45)

d

dt
Ta,1(t) =

Vmax

1 +
(
Sa(t−τ)+R1(t−τ)

k1/2

) − βTa,1(t) (3.3.46)

d

dt
Tb,1(t) =

Vmax

1 +
(
Sb(t−τ)+R1(t−τ)

k1/2

) − βTb,1(t). (3.3.47)

Here the same values for the time delay τ , rate parameters Vmax, β, and kp, and Hill

parameters k1/2 and n, are used throughout the system. This is a sensible choice assuming

all genes use the same core promoter, and all transcription factors use the same repression

domain and carefully tuned DNA binding domains. A sample trajectory of this system is

shown in Figure 3.3.1. Choosing τ = 1 allows direct comparison to the Boolean network

trajectory with the same control input. In an experimental system, the stepwise constant

input could be approximated by washing media across cells in a microfluidic device. For

the other parameters, k1/2 = 0.2, kp = 200, and Vmax, β, and n were varied.

In Figure 3.3.1 the DDE simulations qualitatively track the trajectories of the Boolean

network model. Initially both DDE simulations track quite well. However by time t = 6 the

behavior of the DDE model for n = 2 and Vmax = β = 20 appears to lag compared to the

ideal Boolean network model, and by time t = 12, the DDE model appears to be lagging

by nearly a half time unit. Additionally, the maximum amplitude of the gene expression

levels decreases over time, and this is particularly evident with the transition genes. By

comparison, the DDE model for Vmax = β = 100 and n = 2.5 tracks the Boolean network

model without significant lag or change in maximum amplitude of expression. There are

many methods for improving the behavior of the DDE model. One possible solution is

56

to re-engineer the finite state machine. Other FSMs may accept the same language, and

result in a different GRN that is more robust to the same input. In general, one would like

to know, given an FSM and GRN implementation of that FSM, how robust is the GRN

implementation to changes in the parameters Vmax, β, n, k1/2, and τ .

3.4 GRNs are Computationally Equivalent to FSMs

In the prequel, assuming a Boolean network model, the set of input sequences to the two-

state FSM are exactly the set of input sequences that end in an accepting state in the GRN

realization of the two-state FSM. In computer science, given two models of computation,

if behavior of any machine constructed in one model can be recapitulated with a machine

constructed in the other model, we say that one model is simulated by the other. In fact,

given any FSM the general construction can be used to design a GRN that recapitulates the

behavior of the FSM. In other words, assuming a Boolean network model, GRNs simulate

FSMs. Additionally, because any Boolean network can be simulated by an FSM, any gene

regulatory network modeled as a Boolean network is no more or less capable than a finite

state machine—assuming a Boolean network model, GRNs are computationally equivalent

to FSMs.

Theorem 3.4.1. Given a finite state machine M = (Q,Σ, δ, q0, F), the gene regulatory

network (V,Er, U, Ir) = g(M) simulates M when modeled as a Boolean network.

Proof. Let M = (Q,Σ, δ, q0, F) be an FSM, and let g(M) be the general construction

of a GRN based on M . Let Q = {1, 2, . . . , n} and Σ = {σ1, σ2, . . . , σm}, then the sets of

state genes and transition genes in g(M) are {R1,R2, . . . ,Rn} and {Tσ11, . . . ,Tσmn}.
Let Y ∈ Bn(m+1) be a state vector and U ∈ Bm be an input vector to the Boolean

57

network model of g(M), where

Y =



R1

...

Rn

Tσ1,1
...

Tσm,n


(3.4.1)

U =


START

σ1

...

σm

 . (3.4.2)

Note that in the Boolean network model of g(M), the state of the sensor gene Sσi

at time t depends only on the state of the corresponding input signal σi at time t

(Eq. (3.3.15)). The update function for the Boolean network (Eqs. (3.2.5–3.2.8)) can

be written,

Y t+1 = f(Y t, U t). (3.4.3)

LetRQ andRΣ be equivalence relations between states q ∈ Q and states in the Boolean

network, and between input symbols σ ∈ Σ and control inputs to the Boolean network

respectively,

RQ ∈ Q× Bn(m+1) (3.4.4)

RΣ ∈ Σ× Bm+1. (3.4.5)

58

Additionally, let FBN ⊆ Bn(m+1) be the set of accepting states F projected into Bn+nm

by RQ,

FBN = {Y ∈ Bn(m+1) | ∃q ∈ F s.t. q ∼RQ Y }. (3.4.6)

The Boolean network model of g(M) simulates M , if and only if there exists equivalence

relations RQ and RΣ such that a sequence w ∈ Σ∗ is accepted by the FSM if and only

if the sequence of control inputs related to w by RΣ allows the Boolean network to

reach a state in the set FBN .

Let φ : Q→ Bn(m+1) map from an FSM state to a Boolean network state vector, where

for q ∈ Q, φ(q) = Y and,

Ri =


on, i 6= q

off , otherwise

(3.4.7)

Tσji = off . (3.4.8)

Let ψ : Σ → Bm+1 map from FSM input symbols to Boolean network input vectors,

where for σj ∈ Σ, ψ(σj) = U and,

START = off (3.4.9)

σi =


on, i = j

off , otherwise.

(3.4.10)

Note that φ and ψ are injective functions that define equivalence relations on FSM and

Boolean network states and inputs,

RQ = {(q, φ(q)) | ∀q ∈ Q} (3.4.11)

RΣ = {(σ, φ(σ)) | ∀σ ∈ Σ}. (3.4.12)

59

Finally, let γ : Bn(m+1) × Bm+1 → Bn(m+1) be the two-step update function where for

state vector Y ∈ Bn(m+1) and input vector U ∈ Bm+1,

γ(Y,U) = f(f(Y, U), U). (3.4.13)

Here, γ computes the effect of applying control input U to the Boolean network model

of g(M) for two time steps, beginning in state Y .

Suppose that q, q′ ∈ Q and σ ∈ Σ such that δ(q, σ) 7→ q′, and let Y t = φ(q) ∈ Bn(m+1)

and U t = U t+1 = ψ(σ) ∈ Bm+1 with,

Y t+1 = f(Y t, U t) (3.4.14)

Y t+2 = f(Y t+1, U t+1) (3.4.15)

= γ(Y t, ψ(σ)). (3.4.16)

At time t, state gene Rq is at a low level of expression, and all other state genes are at

a high level of expression. All transition genes Tσi for all i ∈ Q are at a low level of

expression. Signal molecule σ is at a high level of expression at time t, and the START

gene is at a low level of expression. Solving for Eqs. (37) to (39), only the expression

levels of the state gene Rq, and the transition gene Tσq change at time t+ 1,

Rt+1
q = ¬

∨
{(p,s)|δ(p,s)→q}

T ts,p (3.4.17)

= on (3.4.18)

T t+1
σ,q = σt ∧ ¬Rtq (3.4.19)

= on. (3.4.20)

60

At the following time step, only the expression levels of the state gene Rq′ and transition

gene Tσq change,

Rt+2
q′ = ¬

∨
{(p,s)|δ(p,s)→q}

T t+1
s,p (3.4.21)

= off (3.4.22)

T t+2
σ,q = σt ∧ ¬Rt+1

q (3.4.23)

= off . (3.4.24)

The state vector of the Boolean network at time t+ 2 is then,

Y t+2 = γ(φ(q), ψ(σ)) (3.4.25)

= φ(q′). (3.4.26)

Now suppose that q ∈ Q and σ ∈ Σ such that δ(q, σ) does not map to anything. Again,

let Y t = φ(q) and U t = U t+1 = ψ(σ). As before, solving for Eqs. (37) to (39), only the

expression levels of the state gene Rq, and the transition gene Tσq change from time t

to t+ 1,

Y t+1 = f(Y t, U t) (3.4.27)

Rt+1
q = ¬

∨
{(p,s)|δ(p,s)→q}

T ts,p (3.4.28)

= on (3.4.29)

T t+1
σ,q = σt ∧ ¬Rtq (3.4.30)

= on. (3.4.31)

61

However, unlike the previous example, at the following time step, only the expression

level of the transition gene Tσq changes,

Y t+2 = f(Y t+1, U t+1) (3.4.32)

= γ(φ(q), ψ(σ)) (3.4.33)

Rt+2
i = ¬

∨
{(p,s)|δ(p,s)→q}

T t+1
s,p (3.4.34)

= on (3.4.35)

T t+2
σ,q = σt ∧ ¬Rt+1

q (3.4.36)

= off . (3.4.37)

There is no state q′ ∈ Q such that φ(q) = Y t+2. Taken together, this means that for

any q, q′ ∈ Q and σ ∈ Σ,

δ(q, σ) 7→ q′ ⇐⇒ γ(φ(q), ψ(σ)) 7→ φ(q′). (3.4.38)

Now, given an input sequence w ∈ Σ∗ with w = σc1σc2 . . . σcl ,

q1 = δ(q0, σc1) ⇐⇒ φ(q1) = γ(φ(q0), ψ(σc1)) (3.4.39)

q2 = δ(q1, σc2) ⇐⇒ φ(q2) = γ(φ(q1), ψ(σc2)) (3.4.40)

... (3.4.41)

ql = δ(ql−1, σcl) ⇐⇒ φ(ql) = γ(φ(ql−1), ψ(σcl)) (3.4.42)

ql ∈ F ⇐⇒ φ(ql) ∈ FBN . (3.4.43)

Finally, note that from any state, applying the control input that corresponds to ex-

pressing the START gene for two time steps pushes the state of the Boolean network

into the state Y = φ(q0). This means that a sequence w is accepted by M if and

only if the Boolean network is in state Y t=2(|w|+1)+1 ∈ FBN after applying control

62

input hBN (w, t) (Eq. (3.3.22)) from time t = 0 to t = 2(|w| + 1). Thus, as proved by

induction, the Boolean network model of g(M) simulates M .

Corollary 3.4.2. Modeled as a Boolean network, gene regulatory networks are compu-

tationally equivalent to finite state machines.

Proof. Two frameworks for computation are equivalent if and only if any construction

in one framework can be simulated by a construction in the other framework. As shown

in Theorem 1, given an FSM M , the Boolean network model of the gene regulatory

network g(M) simulates M . Now, given a GRN G = (V,Er, Ea) modeled as a Boolean

network, it is easy to see that because there are a finite number of species in the Boolean

network model, and each species may be in only one of two states, there must also be

finite number of states in the Boolean network model. It is therefore always possible

to construct an FSM M = (Q,Σ, δ, q0, F) that simulates G. For example, let the set of

states to the FSM be the set of states to the Boolean network, Q = B|V |, and let the

set of input symbols be a subset Σ ⊆ B|V |. For every state vector Y, Y ′ ∈ B|V | and for

every input vector U , if Y ′ = f(Y, U) in the Boolean network model, add the mapping

δ(Y, U) 7→ Y ′ to the transition function in the FSM. Since the Boolean network model

of any GRN can be simulated by an FSM, GRNs are computationally equivalent to

FSMs.

3.5 DDEs Approximate the Behavior of the Boolean Network

One method for examining how well the behavior of the DDE model approximates the

ideal Boolean network model is to simply compare the state of each model after applying a

prescribed input. To illustrate this method, a new example is introduced, the modulo-two

pulse counter. The finite state machine encoding the modulo-two pulse counter is shown in

Figure 3.5.1A. There are two input symbols to this machine, Σ = {a, ε}, and the machine

accepts all sequences of input symbols that end in an ε. Viewed another way, any accepted

input sequence can be split into a sequence of contiguous a symbols interrupted by sequences

63

of contiguous “ε” symbols. In this way, an accepted input sequence consisting of an even

number of contiguous a symbols should end in state 0, while an accepted input sequence

consisting of an odd number of continuous a sequences should end in state 2. The GRN

implementation of this machine is shown in Figure 3.5.1B. If a biomolecular implementation

is imagined where signal molecule ε is available except in the presence of the input signal

a, this machine counts discrete pulses of a modulo two.

The Boolean network model of the GRN in Figure 3.5.1B simulates the FSM shown in

Figure 3.5.1A. Initially, input signal a is absent and signal ε is present, all state genes are

on, and all transition genes are off . At time t = 0, the START gene is on, leading to the

repression of R0 at time t = 1. The machine then transitions between states 0 through 3

according to the prescribed pulses of input signal a. Figure 3.5.1C illustrates a few sample

trajectories of the DDE model against the trajectory produced by the ideal Boolean network

model for an input of five pulses of equal duration of signal molecule a followed by signal

molecule ε. In these trajectories, β = Vmax, τ = 1, k1/2 = 0.2, and Vmax and n were

varied.

Intuitively, for a fixed τ , increasing Vmax and β will improve the dynamic response of the

DDE model, and increasing the Hill coefficient n results in a sharper sigmoidal response.

This is reflected in Figure 3.5.1C where the DDE model for Vmax = β = 100 and n = 2.5

track the ideal Boolean network trajectory more closely than the model where Vmax = β =

20 and n = 2. Additionally, varying k1/2 affects the sensitivity of expression to upstream

transcription factors. The duration of the input pulse may also be increased relative to

τ . For example, the control input shown in Figure 3.5.1C applies START followed by five

pulses of the input signal a according to a square wave with pulse width of ∆t = 2. A

precise value for τ may not be known, and in networks like the modulo-two pulse counter,

more reliable performance may be achieved by allowing the network to settle into a periodic

orbit before changing inputs.

To quantitatively measure the effects of these parameters, the following two metrics compare

the state of gene expression at a fixed time after applying a control input in a DDE model

to the ideal Boolean network. Where R̂q(t) and Rq(t) are the values of expression for gene

64

Expression

Time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
Ε,3

Ta,3

T
Ε,2

Ta,2

T
Ε,1

Ta,1

T
Ε,0

Ta,0

R3

R2

R1

R0

Ε

a

START

Input

Boolean Network

State

DDEs, V
max

=20, n=2

Transition

DDEs, V
max

=100, n=2.5

C.

A. B.
START

Sε

R0 R2R1 R3

Tε0 Tε2Tε1 Tε3

Ta0 Ta2Ta1 Ta3

Sa

a

ε

Figure 3.5.1: Modulo-two pulse counter machine described as (A) a directed graph representation

of a finite state machine, (B) a gene regulatory network. In the GRN representation, an unspecified

mechanism makes the ε signal available except in the presense of the a signal. (C) Boolean network

and DDE trajectories for the modulo-two pulse counter machine specified by the GRN. In this

simulation, τ = 1, k1/2 = 0.2, and β = Vmax. Vmax and n are varied, with larger values of Vmax and

n resulting in trajectories that more closely follow the ideal Boolean network trajectories.

65

Rq in the DDE model and Boolean network model respectively,

eavg = maxq∈Q
2

∆t

∫ 12.5∆t

12∆t
|Rq(t)− R̂q(t)|dt (3.5.1)

ethresh =


0, eavg < 1/2,

1, eavg ≥ 1/2

. (3.5.2)

Eq. (3.5.1) describes error eavg, which is the L∞ norm on the average error Eq. (3.5.1) takes

the maximum average error eavg, between the DDE model and Boolean network model for

the gene products Rq for all q ∈ Q for half a pulse width following the five pulses of the input

signal a. In Figure 3.5.1, eavg the maximum average difference between the DDE model and

Boolean network model for gene products R0, R1, R2, and R3 on the time interval t = 24 to

t = 25. Eq. (3.5.2) digitizes this error with a threshold of 1
2 as ethresh. Figure 3.5.2 shows

the average error and thresholded error over a range of parameters for the pulse counter

machine given Vmax = β and τ = 1, and nominal values of ∆t = 20, Vmax = β = 10, and

k1/2 = 0.3. The figure shows that for this machine, long pulse widths and larger values of

Vmax and β result in less error for all values of n, and that for smaller values of n, there is

an optimal value of k1/2 near 0.3.

3.6 The FSM Framework in a Cellular Information Processing Context

In the previous two examples, finite state machines were shown as complete circuits. Many

synthetic and naturally occurring biomolecular circuits have been developed and character-

ized, and in the larger context of cellular information processing, finite state machines may

be used to specify the logical control that wires together a broad array of biomolecular sensor

and effector circuits. This strategy may be an intuitive way to design multicellular behav-

iors. To illustrate this concept, a specification is presented for a microcolony edge detection

circuit built around finite state machine control logic, and implemented as a GRN.

66

∆
t

10

20

30

40
Average Error Thresholded Error

lo
g
V
m

a
x

0.0

0.5

1.0

1.5

2.0

k
1
/
2

1 2 3 4 5
0.0

1.0

0.5

n n

0.1

0.3

0.7

0.9

0.5

1 2 3 4 5

Figure 3.5.2: Average error and threshold error for the modulo-two pulse counter illustrated in

Figure 3.5.1. Error metrics (Eqs. (3.5.1–3.5.2)) compare the state of the DDE model to the state

of the ideal Boolean network model. Error is computed following a control input of five pulses of

signaling molecule a. The heat map shows the error for varying Hill coefficient n over a range of

values for k1/2, log Vmax, and input pulsewidth ∆t, given τ = 1 and β = Vmax. Nominally τ = 1,

∆t = 20, Vmax = β = 10, and k1/2 = 0.3. Zero error means that the DDE model and Boolean

network model end in the same state, while an error of one means there is maximal error between

models. In this example, increasing pulse width ∆t, the rate of production and degradation dynamics

Vmax and β, or the Hill coefficient n, improves performance.

67

3.6.1 Example: Bacterial Microcolony Edge Detection Circuit

Figure 3.6.1A depicts a specification for a microcolony edge detection circuit. The figure

shows the information flow between the control logic modules (labeled “wave generator”,

“edge detection”, and “toggle switch”), and biomolecular sensors and effectors (labeled

“stochastic pulse generator”, “band pass filter”, and “timer”). Each control module is

specified by a finite state machine. Here the notion of an FSM A = (Q,Σ, δ, q0, F) is

amended to include a finite set of output symbols Λ and a multivalued output function,

γ : Q× Σ→ Λ. (3.6.1)

On the arrival of each input symbol σ, when the FSM is in state q ∈ Q, in addition to

following transition δ(σ, q) 7→ q′ the machine emits output symbol λ = γ(σ, q) with q′ ∈ Q
and λ ∈ Λ. This is similar to the operation of a type of a finite state machine called

a Mealy machine [98]. As with input symbols, the biomolecular realization of an output

symbol is the upregulation of a transcription factor, or enzymatic production of an inducer

or signaling molecule that may be exported from the cell. In this way, output symbols are

a medium for intercellular or intracellular communication.

For each control module in Figure 3.6.1, the state transition map δ(σ, q) 7→ q′ and output

map γ(σ, q) 7→ λ are represented as a set of directed edges labeled σ
λ connecting node q to

node q′. If there is no output symbol λ ∈ Λ associated with a state transition δ(σ, q) 7→ q′,

then the edge is simply labeled σ. For brevity, if multiple input symbols, say σ1 and σ2 ∈ Σ

result in the same transition from state q to q′, the input symbols are enumerated as σ1|σ2

in the edge label. Similarly, if the output function γ(q, σ) is multivalued, say γ(q, σ) 7→ λ1

and γ(q, σ) 7→ λ2, the output symbols are enumerated as λ1 & λ2. For example, in the

wave generation module of Figure 3.6.1A the edge labeled ε0| k
emit

specifies the transition

function,

δ(Q0
0, ε

0) 7→ Q0
0 (3.6.2)

δ(Q0
0, k) 7→ Q0

0, (3.6.3)

68

wave generator

stochastic pulse

generator

time

signal

edge detection

band pass filter

signal

response
r

1
r

2

timer

t
1

t
2

reset

r
1
, r

2
t
1
, t

2

toggle switch

emit

on,

off

k

emit reset

A.

t = 0

t = 45.4

t = 84.6

t = 144.9

t = 177.2 t = 211.7

B.

Figure 3.6.1: Finite state machine specification and snapshots from a gro simulation of the bacte-

rial microcolony edge detection circuit. (A) The edge detection circuit consists of three asynchronous

and parallel finite state machines and three sensor/effector modules based on existing biomolecular

circuits. The stochastic pulse generator is a source of genetic noise, the band pass filter responds

to middle and high concentrations of a diffusable emit signal, and the timer emits an intercellular

signal at times t1 and t2 after receiving a pulse of the reset signal. (B) A homogeneous microcolony

grows from a single cell. As the microcolony grows, cells stochastically begin a “wave”. Cells relay

the wave and measure the local concentration of the diffusable emit signal after a short refractory

period, to determine whether a cell is in the middle or on the edge of a microcolony. Cells on the

edge move to a RFP producing state, while cells in the middle relax to a non-RFP producing state.

69

and output function γ is defined as,

γ(Q0
0, k) 7→ emit. (3.6.4)

The biomolecular realization of this specification is that signals ε0 and k both leave the

system in state Q0
0, however a transition on signal k results in the upregulation of the emit

signaling molecule.

In operation, the wave generator, edge detection, and toggle switch control logic modules

in Figure 3.6.1A act in parallel with a stochastic pulse generator, a concentration band

pass filter, and a timer through named communication channels. Consider the emit output

symbol to be an intercellular communication channel, and all other output symbols are

intracellular. In a biomolecular realization, the emit symbol can be implemented as a dif-

fusable signaling molecule that is exported from the cell. The intuition behind this design

is that at a stochastic rate, any cell in the microcolony can emit a pulse of a diffusable

signaling molecule that is sensed and relayed by neighboring cells. By sensing the local

concentration of signaling molecules a short time after relaying a wave, a cell can determine

whether or not it is on the edge of a microcolony. Cells that detect a high local concen-

tration of signaling molecules have many close neighbors that relayed a wave recently, and

thus not on the edge of the microcolony. Alternatively, cells that detect a relatively low

concentration of signaling molecules have fewer neighbors, indicating that the cell is on the

edge of the microcolony. When a cell detects that is it on the edge of a microcolony, it

goes into a RFP producing state. When the cell no longer senses that it is on the edge of

a microcolony, it stops production of RFP. This high-level specification was implemented

in the 2D simulation environment gro, robustly producing the red ring colony phenotype

illustrated in Figure 3.6.1. More detailed discussion of the specification can be found in

Appendix B.

The high level specification in Figure 3.6.1 can be refined by replacing finite state machines

with gene regulatory networks, and specifying sensors and effectors as input/output mod-

ules. Figure 3.6.2 illustrates how the GRN implementations of the logical control modules

70

are interconnected with sensors and effectors. The wave generator, edge detection, and

toggle switch FSMs are modular components that realized as three distinct GRNs. The

stochastic pulse generator, band pass filter, and timer sensors and effectors are biomolecu-

lar modules that take a signaling molecule or transcription factor as input, and produce a

signaling molecule or transcription factor as output. Transition genes in the FSMs are used

as input to sensors and effectors, and the output of sensors and effectors are then wired to

the production of signals in the GRN realizations of the FSMs.

3.7 Discussion

I showed that any finite state machine M can be implemented as a gene regulatory network

g(M) made entirely of nominally “on” repressing transcription factors. I presented this

result in the context of a Boolean network model of gene regulatory networks, where finite

state machines are computationally equivalent to gene regulatory networks. Furthermore, I

described a construction for arbitrary finite state machines with a set of simple biomolecular

parts. I presented a delay differential equation model for the biomolecular construction, and

showed through example how the DDE model can be compared to the ideal Boolean network

model using a metric induced by the L∞ norm. Additionally, I showed that the behavior

of the DDE model is close to the behavior of the Boolean network model over a range of

physically relevant parameters. Finally, I applied the framework to a bacterial microcolony

edge detection example, using a gro simulation to show that our approach can be used in

a more general cellular information processing context to implement asynchronous logical

control interfacing with a set of biomolecular sensors and actuators.

3.8 Methods

All Boolean network and DDE simulations are performed in Mathematica, Version 8.0 [83],

with numerical solver NDSolve. The microcolony edge detection example was simulated in

gro, Version beta.4 [42]. Mathematica and gro files are available upon request.

71

START

R00

Sε0

Sk

Tε00

Tk0

ε0

k
Sε1

Sr
1

Sr
2

St
1

St
2

R01

Tε10

Tr
1
0

Tr
2
0

Tt
2
0

R11

Tε11

Tr
1
1

Tr
2
1

Tt
1
1

R21

Tε12

Tr
1
2

Tr
2
2

Tt
1
2

R31

Tε13

Tr
1
3

Tr
2
3

Tt
2
3

ε1

r
1

r
2

t
1

t
2

R12R02

Sε2

Son

Soff

Tε21Tε20

Ton0 Ton1

Toff0 Toff1

ε2

on

off

stochastic

pulse generator

at rate k k

emit band pass filter

if emit ∈ [r1, r2)
if emit ∈ [r2,∞)

r
1

r
2

timer

if t = t1
if t = t2

on reset, t := 0

reset

t
1
t
2

off

on

Figure 3.6.2: Gene regulatory network realization of the bacterial microcolony edge detection

circuit depicted in Figure 3.6.1. Finite state machine modules are separated by gray modules. The

upper left module encodes the wave generator, the module below it encodes the toggle switch,

and the module in the upper right encodes the edge detection FSM. The bottom module contains

specifications for the unrealized sensors and effectors. Sensor and effector specifications consist of

an optional input signal, output signal, and a description of the behavior of the module. Red lines

depict how genes in the finite state machines are wired to sensors, and blue lines depict how sensors

are wired to signals. The purple cloud around emit indicates that emit is an external diffusable

cell-cell signaling molecule; all other signals are considered internal.

72

Chapter 4

CONCLUSIONS

For this dissertation, I designed two tool chains for compiling high-level specifications into

biomolecular implementations. I successfully demonstrated that by carefully choosing rep-

resentations of mathematical objects (i.e. dual rail representation of signals), the tools and

results of control theory and computer science can be applied to the design of biomolecular

reaction networks and genetic circuits. In Chapter 2 I showed how the framework of Linear

I/O systems can be used to design robust, scalable, and composable, biochemical reaction

networks. In Chapter 3 I illustrated a method for compiling finite state machines into a

gene regulatory network, and showed mathematically that a well-accepted Boolean network

model of gene regulation is computationally equivalent to finite state machines. Addition-

ally, I demonstrated quantitatively that a more realistic delay differential equation model

of gene regulation can approximate the Boolean network model for a physically realistic

set of parameters. Furthermore, I demonstrated how finite state machines and linear I/O

systems might provide a framework for specifying and analyzing complex behaviors in a

cellular information processing framework. Specifically, this was shown in the context of a

bacterial microcolony edge detection circuit this is specified from the input/output behavior

of circuits that have been implemented in living cells.

Our gene regulatory network and biomolecular constructions were optimized for clarity and

simplicity of parts, and not for performance. Other network topologies and biomolecular

implementations may perform more robustly or be better suited for a particular task. For

example, a chemical system incorporating seesaw gates [12] or transcription enzymes might

be more robust for a particular experimental condition or linear I/O system specification. A

FSM system utilizing recombinase and genome editing may result in greater state stability

[16]. Incorporating new parts, like activators, analog sensors, or molecular insulation devices

73

[74,99], could also improve performance. Additionally, many different finite state machines

may encode the same control logic or recognize the same language over input symbols. It is

certainly the case that given a desired high level behavior, some finite state machines result

in a more robust biomolecular implementation that others. Our metric for comparing the

behavior of a continuous time and continuous space system to an ideal Boolean network

model can be used to explore and optimize over the space of possible machines. More

detailed analysis of the low level models (DDEs for GRNs, and the DNA model for the

scheme developed by Soloveichik et al.) could be done, but the issues addressed in such an

analysis really depend on the actual implementation.

The results of this work are representative of a new focus on abstraction in synthetic bio-

logical systems. In building a design theory for chemistry, chemical reactions networks are

usually the most natural intermediate representation—the middle of the “hourglass” [100].

Many different high level languages and formalisms have been and can likely be compiled to

chemical reactions, and chemical reactions themselves (as an abstract specification) can be

implemented with a variety of low level molecular mechanisms. Similarly, gene regulatory

networks are usually the most natural intermediate representation for synthetic gene circuits

in living cells, and gene regulatory networks themselves may be implemented with a variety

of biomolecular mechanisms. This framework enables the synthetic biologist to ask and

answer new and specific questions about synthetic biomolecular mechanisms. For example,

one may ask specifically how the CRISPR system and small molecule sensing might be

used to implement a eukaryotic finite state machine [60, 89]. I have outlined one approach

to answering this question in Appendix Section D.1, which may be a fruitful direction of

research.

Additionally, this work has implications to understanding the biology of cells, possibly sug-

gesting a new way to relate cell state to observed patterns of gene expression, and more

generally, hinting at the computational power and limitations of cells. A single cell can

recognize any sequence of molecular inputs that can be represented as a regular expression,

however no arrangement of a gene regulatory network can enable a single cell to recog-

nize more complex sets of sequences such as those specified by context-free or recursively

74

enumerable languages. This means, for example, that a single cell can be programmed to

compute the sum of two integers represented by signal pulses, however a single cell could

not, without some extra internal memory of variable size, compute the product of two ar-

bitrary integers, or recognize when an arbitrary sequence consists of an equal number of

pulses of two chemical inducers.

This observation suggests that multicellular organisms may have evolved precisely because

doing so enables a more powerful form of computation. Indeed, given single cells that

implement finite state machines, it is a small theoretical step to arrive at multicellular

systems that are capable of more complex computation. L-systems, for example, are a cell-

based model for plant development in which cells have finite state that when taken together

is computationally equivalent to pushdown automata [27]. Another rich area of research

may be in developing more complex models of computation based on growing, dividing, cells.

In Appendix Section D.2, I outline one way in which a linear arrangement of cells such as

cyanobacteria could hypothetically implement a Turing tape machine. Future work in this

area might more carefully explore the computational power and limitations of multicellular

systems, and the relation between computational complexity and functional morphology, in

more detail.

75

BIBLIOGRAPHY

[1] Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic
circuits. Science 314:1585–8.

[2] Kim J, White KS, Winfree E (2006) Construction of an in vitro bistable circuit from
synthetic transcriptional switches. Mol Syst Biol 2:68.

[3] Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven
reactions and networks catalyzed by DNA. Science 318:1121–5.

[4] Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled
molecular machine made of DNA. Nature 406:605–8.

[5] Qian L, Soloveichik D, Winfree E (2011) Efficient turing-universal computation with
DNA polymers. DNA computing and molecular programming pp 123–140.

[6] Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with finite stochastic
chemical reaction networks. Natural Computing 7:615–633.

[7] Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using
toehold exchange. J Am Chem Soc 131:17303–14.

[8] Green C, Tibbetts C (1981) Reassociation rate limited displacement of DNA strands
by branch migration. Nucleic Acids Res 9:1905–18.

[9] Panyutin IG, Hsieh P (1993) Formation of a single base mismatch impedes sponta-
neous DNA branch migration. J Mol Biol 230:413–24.

[10] Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical
kinetics. Proc Natl Acad Sci USA 107:5393–8.

[11] Schulman R, Winfree E (2010) Programmable control of nucleation for algorithmic
self-assembly. SIAM Journal on Computing 39:1581–1616.

[12] Qian L, Winfree E (2011) A simple DNA gate motif for synthesizing large-scale
circuits. J R Soc Interface 8:1281–97.

[13] Costa Santini C, Bath J, Tyrrell AM, Turberfield AJ (2013) A clocked finite state
machine built from DNA. Chem Commun (Camb) 49:237–9.

[14] Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in
Escherichia coli. Nature 403:339–42.

[15] Ellis T, Wang X, Collins JJ (2009) Diversity-based, model-guided construction of
synthetic gene networks with predicted functions. Nat Biotechnol 27:465–71.

76

[16] Friedland AE, et al. (2009) Synthetic gene networks that count. Science 324:1199–202.

[17] Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional reg-
ulators. Nature 403:335–8.

[18] Miyamoto T, Razavi S, DeRose R, Inoue T (2012) Synthesizing biomolecule-based
boolean logic gates. ACS Synth Biol.

[19] Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular
system for programmed pattern formation. Nature 434:1130–4.

[20] Sohka T, et al. (2009) An externally tunable bacterial band-pass filter. Proc Natl
Acad Sci USA 106:10135–40.

[21] Danino T, Mondragón-Palomino O, Tsimring L, Hasty J (2010) A synchronized
quorum of genetic clocks. Nature 463:326–30.

[22] You L, Cox RS, Weiss R, Arnold FH (2004) Programmed population control by
cell-cell communication and regulated killing. Nature 428:868–71.

[23] Regot S, et al. (2011) Distributed biological computation with multicellular engineered
networks. Nature 469:207–11.

[24] Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using geneti-
cally encoded NOR gates and chemical ‘wires’. Nature 469:212–5.

[25] Liu C, et al. (2011) Sequential establishment of stripe patterns in an expanding cell
population. Science 334:238–41.

[26] Lindemayer A (1968) Mathematical models for cellular interaction in development I
and II. J. Theoret. Biol.(18) 280:315.

[27] Prusinkiewicz P, Lindenmayer A (1996) The Algorithmic Beauty of Plants (Springer).

[28] Sipser M (2013) Introduction to the theory of computation (Cengage Learning, Boston,
MA).

[29] Hopcroft JE, Motwani R, Ullman JD (2007) Introduction to automata theory, lan-
guages, and computation (Pearson/Addison Wesley, Boston).

[30] Burks AW, Von Neumann J (1966) Theory of self-reproducing automata (University
of Illinois Press).

[31] Turing AM (1937) On Computable Numbers, with an Application to the Entschei-
dungsproblem: A Correction (C.F. Hodgson & Son), p 3.

[32] Gardner M (1970) Mathematical games: The fantastic combinations of John Conway’s
new solitaire game life. Scientific American 223:120–123.

[33] Wolfram S (1983) Statistical mechanics of cellular automata. Reviews of modern
physics 55:601.

[34] Wolfram S (2002) A new kind of science (Wolfram Media, Champaign, IL).

77

[35] Abelson H, et al. (2000) Amorphous computing. Commun. ACM 43:74–82.

[36] Coore D, Nagpal R, Weiss R (1997) Paradigms for structure in an amorphous com-
puter., Technical report.

[37] Coore DN (1999) Ph.D. thesis (Massachusetts Institute of Technology).

[38] Nagpal R (2002) Programmable self-assembly using biologically-inspired multiagent
control (ACM), pp 418–425.

[39] Nagpal R, Kondacs A, Chang C (2003) Programming methodology for biologically-
inspired self-assembling systems.

[40] Stoy K, Nagpal R (2007) Self-reconfiguration using directed growth. Distributed
Autonomous Robotic Systems 6 pp 3–12.

[41] Yamins D, Nagpal R (2008) Automated global-to-local programming in 1-d spatial
multi-agent systems (International Foundation for Autonomous Agents and Multia-
gent Systems), pp 615–622.

[42] Jang SS, Oishi KT, Egbert RG, Klavins E (2012) Specification and simulation of
synthetic multicelled behaviors. ACS Synth Biol 1:365–374.

[43] Chomsky N (1956) Three models for the description of language. IEEE Transactions
on Information Theory 2:113–124.

[44] Moore EF (1956) Gedanken-experiments on sequential machines. Automata studies
34:129–153.

[45] Rabin MOO, Scott D (1959) Finite automata and their decision problems. IBM
Journal of Research and Development 3:114–125.

[46] Minsky ML (1967) Computation: Finite and Infinite Machines.

[47] Burks AW, Wang H (1957) The logic of automata–part i. J. ACM 4:193–218.

[48] Minsky ML (1961) Recursive unsolvability of post’s problem of ”tag” and other topics
in theory of turing machines. Annals of Mathematics 74:437–455.

[49] McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biology 52:99 – 115.

[50] Kleene SC (1951) Representation of events in nerve nets and finite automata.

[51] Wieland M, Fussenegger M (2012) Engineering molecular circuits using synthetic
biology in mammalian cells. Annu Rev Chem Biomol Eng 3:209–34.

[52] Lohmueller JJ, Armel TZ, Silver PA (2012) A tunable zinc finger-based framework
for Boolean logic computation in mammalian cells. Nucleic Acids Res.

[53] Wang B, Kitney RI, Joly N, Buck M (2011) Engineering modular and orthogonal
genetic logic gates for robust digital-like synthetic biology. Nat Commun 2:508.

78

[54] Becskei A, Séraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks:
cell differentiation by graded to binary response conversion. EMBO J 20:2528–35.

[55] Hasty J, McMillen D, Collins JJ (2002) Engineered gene circuits. Nature 420:224–230.

[56] Bonnet J, Subsoontorn P, Endy D (2012) Rewritable digital data storage in live
cells via engineered control of recombination directionality. Proc Natl Acad Sci USA
109:8884–9.

[57] Siuti P, Yazbek J, Lu TK (2013) Synthetic circuits integrating logic and memory in
living cells. Nat Biotechnol 31:448–52.

[58] Tabor JJ, et al. (2009) A synthetic genetic edge detection program. Cell 137:1272–81.

[59] Lu TK, Khalil AS, Collins JJ (2009) Next-generation synthetic gene networks. Nat
Biotechnol 27:1139–50.

[60] Qi LS, et al. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-
specific control of gene expression. Cell 152:1173–83.

[61] Beerli RR, Barbas CF (2002) Engineering polydactyl zinc-finger transcription factors.
Nat Biotechnol 20:135–41.

[62] Mandell JG, Barbas CF (2006) Zinc finger tools: custom DNA-binding domains for
transcription factors and nucleases. Nucleic Acids Res 34:W516–23.

[63] Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL
effectors. Science 326:1501.

[64] Li Y, Moore R, Guinn M, Bleris L (2012) Transcription activator-like effector hybrids
for conditional control and rewiring of chromosomal transgene expression. Sci Rep
2:897.

[65] Khalil AS, et al. (2012) A synthetic biology framework for programming eukaryotic
transcription functions. Cell 150:647–58.

[66] Havens KA, et al. (2012) A synthetic approach reveals extensive tunability of auxin
signaling. Plant Physiol 160:135–42.

[67] Kämpf MM, et al. (2012) Rewiring and dosing of systems modules as a design approach
for synthetic mammalian signaling networks. Mol Biosyst.

[68] Blount BA, Weenink T, Vasylechko S, Ellis T (2012) Rational diversification of a pro-
moter providing fine-tuned expression and orthogonal regulation for synthetic biology.
PLoS One 7:e33279.

[69] Egbert RG, Klavins E (2012) Fine-tuning gene networks using simple sequence re-
peats. Proceedings of the National Academy of Sciences.

[70] Brewster RC, Jones DL, Phillips R (2012) Tuning promoter strength through RNA
polymerase binding site design in Escherichia coli. PLoS Comput Biol 8:e1002811.

79

[71] Bacchus W, Fussenegger M (2012) Engineering of synthetic intercellular communica-
tion systems. Metab Eng.

[72] Klonowski W (1983) Simplifying principles for chemical and enzyme reaction kinetics.
Biophys Chem 18:73–87.

[73] Dorf RC, Bishop RH (2008) Modern control systems (Pearson Prentice Hall, Upper
Saddle River, NJ).

[74] Del Vecchio D, Ninfa AJ, Sontag ED (2008) Modular cell biology: retroactivity and
insulation. Mol Syst Biol 4:161.

[75] Dullerud GE, Paganini FG (2000) A course in robust control theory : a convex
approach (Springer, New York).

[76] Sun Z (2005) Switched linear systems : Control and design (Springer, London).

[77] Khalil HK (2002) Nonlinear systems (Prentice Hall, Upper Saddle River, N.J.).

[78] Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-
assembly pathways. Nature 451:318–22.

[79] Kim J (2007) Ph.D. thesis (California Institute of Technology).

[80] Park SHH, Zarrinpar A, Lim WA (2003) Rewiring MAP kinase pathways using alter-
native scaffold assembly mechanisms. Science 299:1061–4.

[81] Bashor CJ, Helman NC, Yan S, Lim WA (2008) Using engineered scaffold interactions
to reshape MAP kinase pathway signaling dynamics. Science 319:1539–43.

[82] Grünberg R, Serrano L (2010) Strategies for protein synthetic biology. Nucleic Acids
Res 38:2663–75.

[83] Wolfram Research, Inc. (2010) Mathematica. Wolfram Research, Inc. Version 8.0.

[84] Lawrence PA (1992) The making of a fly: the genetics of animal design. (Blackwell
Scientific Publications Ltd).

[85] Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science
330:612–6.

[86] Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal
development. Science 330:622–7.

[87] Inbar-Feigenberg M, Choufani S, Butcher DT, Roifman M, Weksberg R (2013) Basic
concepts of epigenetics. Fertil Steril 99:607–15.

[88] Garg A, Lohmueller JJ, Silver PA, Armel TZ (2012) Engineering synthetic TAL
effectors with orthogonal target sites. Nucleic Acids Res.

[89] Gilbert LA, et al. (2013) CRISPR-mediated modular RNA-guided regulation of tran-
scription in eukaryotes. Cell 154:442–51.

80

[90] Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed
genetic nets. J Theor Biol 22:437–67.

[91] Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol
42:563–85.

[92] Strogatz SH (2001) Exploring complex networks. Nature 410:268–276.

[93] de Jong H (2002) Modeling and simulation of genetic regulatory systems: A literature
review. Journal of Computational Biology 9:67–103.

[94] Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional
regulation network of Escherichia coli. Nat Genet 31:64–8.

[95] Bornholdt S (2008) Boolean network models of cellular regulation: prospects and
limitations. J R Soc Interface 5 Suppl 1:S85–94.

[96] Sadot A, et al. (2013) Information-theoretic analysis of the dynamics of an executable
biological model. PLoS One 8:e59303.

[97] Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11:835–41.

[98] Mealy GH (1955) A method for synthesizing sequential circuits. Bell System Technical
Journal 34:1045–1079.

[99] Daniel R, Rubens JR, Sarpeshkar R, Lu TK (2013) Synthetic analog computation in
living cells. Nature 497:619–23.

[100] Doyle J, Csete M (2007) Rules of engagement. Nature 446:860.

[101] Horvath P, Barrangou R (2010) Crispr/cas, the immune system of bacteria and
archaea. Science 327:167–70.

[102] Brouns SJJ, et al. (2008) Small crispr rnas guide antiviral defense in prokaryotes.
Science 321:960–4.

[103] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence
of the iap gene, responsible for alkaline phosphatase isozyme conversion in escherichia
coli, and identification of the gene product. J Bacteriol 169:5429–33.

[104] Hou Z, et al. (2013) Efficient genome engineering in human pluripotent stem cells
using cas9 from neisseria meningitidis. Proc Natl Acad Sci U S A 110:15644–9.

[105] Mali P, et al. (2013) Rna-guided human genome engineering via cas9. Science 339:823–
6.

[106] Maeder ML, et al. (2013) Crispr rna-guided activation of endogenous human genes.
Nat Methods 10:977–9.

[107] McIsaac RS, et al. (2011) Fast-acting and nearly gratuitous induction of gene expres-
sion and protein depletion in saccharomyces cerevisiae. Mol Biol Cell 22:4447–59.

81

Appendix A

IMPLEMENTATION AND SIMULATION DETAILS FOR THE
CHEMICAL REALIZATION AND DNA IMPLEMENTATION OF

LINEAR I/O SYSTEMS

Simulations were generated via mass action kinetics models in Mathematica [83]. DNA

implementations were designed in the schema of Soloveichik et al. [10]. This section provides

details of the chemical reaction networks, rate constants, and initial conditions used to

produce simulations appearing in Chapter 2.

A.1 Catalysis, Degradation, Annihilation

Figure 2.5.1 shows simulated trajectories of the DNA implementation of catalysis, degra-

dation, and annihilation reactions. For each initial fuel concentration Cmax, the rates qi

and qmax were tuned in order to approximate a particular ideal chemical reaction. Rate

constants qi and qmax used to produce the simulated trajectories in Figure 2.5.1 are shown

in Table A.1.1. Of note is that the rate parameters qi and qmax for Cmax = 1 µM are

physically realizable for catalysis, degradation, and annihilation [7].

Catalysis Degradation Annihilation
(M−1s−1) (M−1s−1) (M−1s−1)

Cmax (nM) qi qmax qi qmax qi qmax
1 106 109 106 – – 106

10 105 108 105 – – 106

100 104 107 104 – – 106

1000 103 106 103 – – 106

Table A.1.1: Rate parameters for the DNA implementation of catalysis, degradation, and annihi-

lation, shown in Figure 2.5.1.

82

A.2 Integration, Gain, Summation

Integration, gain, and summation are the primitive blocks of any linear I/O system. These

primitive blocks are approximated by ideal chemical reactions, and the ideal chemical reac-

tions are implemented enzyme-free DNA reactions illustrated in Figure 2.5.1. Figure 2.3.1

illustrates the dynamics ideal chemical realization and DNA implementation of integration,

gain, and summation, in response to a square wave input for physically realizable reaction

rates and chemical concentrations.

A.2.1 Integration

The linear model, as well the ideal chemical realization, and DNA implementation of in-

tegration and the square wave input are illustrated in Figure A.2.1. Using the schema

introduced by Soloveichik et al., integration is implemented with DNA using two catalysis

and one annihilation reaction. The square wave input is implemented with one annihilation

reaction, and two impulse signal species inputs. In practice such an impulse in accomplished

by pipetting in a small volume of input species at high concentration. Unregulated inputs

in the DNA model are added at twice their concentration in the ideal chemical realization

in order to attenuate for the fast sequestration of u+ and u− in H3 and HS3 respectively.

The result is the integration of a square wave input,

y(t) =

∫ t

τ=0
αu1(τ)dt (A.2.1)

u1(t) =

 3.33× 10−8 t < 600

−3.33× 10−8 otherwise
(A.2.2)

α ≈ 0.00833. (A.2.3)

83

Linear Model
Ideal Chemical
Realization DNA Implementaiton

u±
1

α−α− u±
1 + y±

u±
1 +G±

1

q1−q1− O±
1

O±
1 + T±

1

qmax−−−qmax−−− u±
1 + y±

y+ + y− η−η− ∅

y+ + L2

qmax−−−−−−
qmax

H2 +B2

y− + LS2

qmax−−−−−−
qmax

HS2 +BS2

y− +H2

qmax−−−qmax−−− ∅

u1(t) =
3.33× 10−8 0 ≤ t < 600

−3.33× 10−8 600 ≤ t < 1200

u+
1 + u−

1

η−η− ∅

u+
1 + L3

qmax−−−−−−
qmax

H3 +B3

u−
1 + LS3

qmax−−−−−−
qmax

HS3 +BS3

u−
1 +H3

qmax−−−qmax−−− ∅
u+
1 (0) = 33.33 nM

u−
1 (600) = 66.67 nM

u+
1 (0) = 66.67 nM

u−
1 (600) = 133.33 nM

α = 1
2
q1Cmax

η = 1
2
qmaxCmax

Cmax = 1 µM
q1 = 1.67× 104/M/s
qmax = 106/M/s

(a)

(b)

y(t) =
t

τ=0
αu (τ)dτ1

Figure A.2.1: Linear model, ideal chemical realization, and DNA implementation for integration

of a square wave input. (a) Integration is approximated by three ideal chemical reactions. The DNA

implementation is modeled by eight reactions. The square wave input is implemented by a single

annihilation reaction and two instantaneous additions of chemical species at time t = 0 and t = 600.

(b) Rate and concentration parameters for the simulated trajectories that appear in Figure 3a. The

initial concentration of fuel species G±
i , T±

i , Li, Bi, LSi, and BSi, are set to Cmax. All other initial

concentrations are set to 0 nM unless otherwise specified.

84

A.2.2 Gain

The linear model, ideal chemical realization, and DNA implementation of gain and the

square wave input are illustrated in Figure A.2.2. Gain is implemented in DNA using two

catalysis, two degradation, and one annihilation reaction. Again, the square wave input

is implemented with one annihilation reaction, and two impulse signal species inputs. As

before unregulated inputs u+ and u− are added at twice their ideal concentration in order

to attenuate for sequestration in the annihilation implementation. The result is a gain

multiplied by a square wave input,

y(t) = ku1(t) (A.2.4)

u1(t) =

 5× 10−9 t < 4000

−5× 10−9 otherwise
(A.2.5)

k = 3. (A.2.6)

A.2.3 Summation

Finally, the linear model, ideal chemical realization, and DNA implementation of summa-

tion and the two square wave inputs are shown in Figure A.2.3. Two-input summation is

implemented in DNA using four catalysis, two degradation, and one annihilation reaction.

Each square wave input is modeled with an annihilation reaction and a series of impulse sig-

nal species inputs. Again, the unregulated inputs u+ and u− are added at twice their ideal

concentration to attenuate for sequestration. The result is the summation of two square

wave inputs,

y(t) = u1(t) + u2(t) (A.2.7)

u1(t) =

 4× 10−9 t ∈ [0, 5000) ∪ [10000, 15000)

−4× 10−9 otherwise
(A.2.8)

u2(t) =

 8× 10−9 t < 10000

−8× 10−9 otherwise.
(A.2.9)

85

y(t) = ku1(t)

u±
1

γk−γk− u±
1 + y± u±

1 +G±
1

q1−q1− O±
1

O±
1 + T±

1

qmax−−−qmax−−− u±
1 + y±

y± γ−γ− ∅ y± +G±
2

q2−q2− ∅

y+ + y− η−η− ∅
qmax

y+ + L3

qmax−−−−−− H3 +B3

y− + LS3

qmax−−−−−−
qmax

HS3 +BS3

y− +H3

qmax−−−qmax−−− ∅

u1(t) =
5× 10−9 0 ≤ t < 4000

−5× 10−9 4000 ≤ t < 8000

u+
1 + u−

1

η−η− ∅

u+
1 + L4

qmax−−−−−−
qmax

H4 +B4

u−
1 + LS4

qmax−−−−−−
qmax

HS4 +BS4

u−
1 +H4

qmax−−−qmax−−− ∅
u+
1 (0) = 5 nM

u−
1 (4000) = 10 nM

u+
1 (0) = 10 nM

u−
1 (4000) = 20 nM

Cmax = 1 µM
q1 = 1.5× 104/M/s
q2 = 0.5× 104/M/s
qmax = 106/M/s

k = q1 q2
γ = 1

2
q2Cmax

η = 1
2
qmaxCmax

/

Linear Model
Ideal Chemical
Realization DNA Implementaiton

(a)

(b)

Figure A.2.2: Linear model, ideal chemical realization, and DNA implementation of a gain us-

ing a square wave input. (a) Gain is approximated with five ideal chemical reactions. The DNA

implementation is modeled with nine reactions. The square wave input is modeled by an annihila-

tion reaction and two instantaneous additions of chemical species at time t = 0 and t = 4000. (b)

Rate and concentration parameters for the simulated trajectories that appear in Figure 3b. Initial

concentration of fuel species are set to Cmax. All other initial concentrations are set to 0 nM.

86

y(t) = 2
i=1 kiui(t)

u±
1

γk1−−γk1−− u±
1 + y±

u±
2

γk2−−γk2−− u±
2 + y±

y± γ−γ− ∅

y+ + y− η−η− ∅

u+
1 + u−

1

η−η− ∅

u+
1 (0) = 4 nM

u−
1 (5000) = 8 nM

u+
1 (10000) = u+

1 (10000
−) + 8 nM

u−
1 (15000) = u−

1 (15000
−) + 8 nM

u2(t) =
8× 10−9 0 ≤ t < 10000

−8× 10−9 10000 ≤ t < 20000

u+
2 + u−

2

η−η− ∅

u+
2 (0) = 8 nM

u−
2 (10000) = 16 nM

ki = qi/q 3, i ∈ { 1, 2}
γ = 1

2
q3Cmax

η = 1
2
qmaxCmax

u±
1 +G±

1

q1−q1− O±
1

O±
1 + T±

1

qmax−−−qmax−−− u±
1 + y±

u±
2 +G±

2

q2−q2− O±
2

O±
2 + T±

2

qmax−−−qmax−−− u±
2 + y±

y± +G±
3

q3−q3− ∅

y+ + L4

qmax−−−−−−
qmax

H4 +B4

y− + LS4

qmax−−−−−−
qmax

HS4 +BS4

y− +H4

qmax−−−qmax−−− ∅

u+
1 + L5

qmax−−−−−−
qmax

H5 +B5

u−
1 + LS5

qmax−−−−−−
qmax

HS5 +BS5

u−
1 +H5

qmax−−−qmax−−− ∅
u+
1 (0) = 8 nM

u−
1 (5000) = 16 nM

u+
1 (10000) = u+

1 (10000
−) + 16 nM

u−
1 (15000) = u−

1 (15000
−) + 16 nM

u+
2 + L6

qmax−−−−−−
qmax

H6 +B6

u−
2 + LS6

qmax−−−−−−
qmax

HS6 +BS6

u−
2 +H6

qmax−−−qmax−−− ∅
u+
2 (0) = 16 nM

u−
2 (10000) = 32 nM

Cmax = 1 µM
qi = 4× 103/M/s, i ∈ { 1, 2, 3}

qmax = 106/M/s

Linear Model
Ideal Chemical
Realization DNA Implementaiton

(a)

(b)

u1(t) =






4× 10−9 t ∈ [0, 5000)
−4× 10−9 t ∈ [5000, 10000)
4× 10−9 t ∈ [10000, 15000)

−4× 10−9 t ∈ [15000, 20000)

Figure A.2.3: Linear model, ideal chemical realization, and DNA implementation of summation

using two square wave inputs. (a) Two-input summation is approximated with seven ideal chemical

reactions. The DNA implementation is modeled with 16 reactions. The square wave inputs are

modeled by an annihilation reaction for each input signal, as well as instantaneous additions of

chemical species at times t = 0, 5000, 1000, 15000. (b) Rate and concentration parameters for the

simulated trajectories that appear in Figure 3c. Initial concentration of fuel species are set to Cmax.

All other initial concentrations are set to 0 nM.

A.3 Ideal Chemical Reaction Network and DNA Implementation of the PI
Controller

The linear model, ideal chemical realization, and DNA implementation of the PI controller

with production and degradation disturbances is presented in Figure A.3.1. The optimized

87

PI controller consists of two weighted summations (four catalysis, two degradation, and

one annihilation reaction each), and a weighted integrator (two catalysis reactions and an

annihilation reaction). The step input, as before, is implemented with an annihilation re-

action and a series of impulse signal species inputs. As mentioned before, in practice an

impulse of signal species is generated by pipetting in a small volume of input species at

high concentration. Again, in the DNA implementation the unregulated u+ and u− inputs

are added at twice their ideal concentration to attenuate for sequestration in the annihila-

tion implementation. Identical production and degradation reactions were composed with

the ideal chemical realization and DNA model, resulting in an implementation of the PI

controller in Figure 2.1.1 with kI = kP = 1, and P (s) = 1
3 .

88

DNA Implementation

u± γ−γ− u± + x±
1

u± +G±
1

q1−q1− O±
1

O±
1 + T±

1

qmax−−−qmax−−− u± + x±
1

x±
5

γ−γ− x±
5 + x∓

1

x±
5 +G±

2

q2−q2− O±
2

O±
2 + T±

2

qmax−−−qmax−−− x±
5 + x∓

1

x±
1

γ−γ− ∅ x±
1 +G±

3

q3−q3− ∅

x+
1 + x−

1

η−η− ∅

x+
1 + L4

qmax−−−−−−
qmax

H4 +B4

x−
1 + LS4

qmax−−−−−−
qmax

HS4 +BS4

x−
1 +H4

qmax−−−qmax−−− ∅

x±
1

kI−kI− x±
1 + x±

4

x±
1 +G±

5

q5−q5− O±
5

O±
5 + T±

5

qmax−−−qmax−−− x±
1 + x±

4

x+
4 + x−

4

η−η− ∅

x+
4 + L5

qmax−−−−−−
qmax

H5 +B5

x−
4 + LS5

qmax−−−−−−
qmax

HS5 +BS5

x−
4 +H5

qmax−−−qmax−−− ∅

x±
1

γkP−−−γkP−−− x±
1 + x±

5

x±
1 +G±

7

q7−q7− O±
7

O±
7 + T±

7

qmax−−−qmax−−− x±
1 + x±

5

x±
4

γ−γ− x±
4 + x±

5

x±
4 +G±

8

q8−q8− O±
8

O±
8 + T±

8

qmax−−−qmax−−− x±
4 + x±

5

∅
γδ1−−γδ1−− x±

5 ∅
γδ1−−γδ1−− x±

5

x±
5

γ(1+δ2)−−−−−γ(1+δ2)−−−−− ∅
x±
5 +G±

9

q9−q9− ∅

x±
5

γδ2−−γδ2−− ∅
y± x±

6 x±
5 y± x±

6 x±
5

x+
5 + x−

5

η−η− ∅

x+
5 + L10

qmax−−−−−−
qmax

H10 +B10

x−
5 + LS10

qmax−−−−−−
qmax

HS10 +BS10

x−
5 +H10

qmax−−−qmax−−− ∅

u+ + u− η−η− ∅

u+ + L11

qmax−−−−−−
qmax

H11 +B11

u− + LS11

qmax−−−−−−
qmax

HS11 +BS11

u− +H11

qmax−−−qmax−−− ∅
u+(0) = 4 nM

u−(75000) = 8 nM
u+(150000) = u+(150000−) + 8 nM
u−(225000) = u−(225000−) + 8 nM

u+(0) = 8 nM
u−(75000) = 16 nM

u+(150000) = u+(150000−) + 16 nM
u−(225000) = u−(225000−) + 16 nM

kI = 1
2
q5Cmax

kP = q7/q 8

γ = 1
2
qiCmax, i ∈ { 1, 2, 3, 8, 9}
η = 1

2
qmaxCmax

P = (1 + δ2)
−1

Cmax = 1 µM
qi = 800/M/s, i ∈ { 1, 2, 3, 5, 7, 8, 9}

qmax = 106/M/s
δ2 = 2

x1(t) = u(t)− x5(t)

ẋ4(t) = kIx1(t)

x5(t) = kPx1 + x4

y(t) = x6(t) = Px5(t)

u(t) =






4× 10−9 t ∈ [0, 75000)
−4× 10−9 t ∈ [75000, 150000)
4× 10−9 t ∈ [150000, 225000)

−4× 10−9 t ∈ [225000, 300000)

Ideal Chemical RealizatonLinear System

(a)

(b)

Figure A.3.1: PI Controller with production and degradation disturbances. (a) The PI controller is

approximated with 17 ideal chemical reactions, or 19 reactions including the chemical disturbance.

The DNA implementation is modeled with 30 reactions, or 33 reactions including the chemical

disturbance. The square wave input is modeled by an annihilation reaction and four instantaneous

additions of chemical species u+ and u− at times t = 0, 75000, 150000, 225000. (b) Rate and

concentration parameters for the simulated trajectories that appear in Figure 1c. Fuel species G±
i ,

T±
i , Li, Bi, LSi, and BSi, are set to Cmax. All other species have initial concentration 0 nM.

89

Appendix B

BACTERIAL MICROCOLONY EDGE DETECTION

Section 3.6.1 discusses a possible implementation of a bacterial microcolony edge detection

circuit designed from a finite state machine specification. A high level specification of

the circuit is illustrated in Figure 3.6.1. In detail, the operation of the edge detection

circuit begins with the stochastic pulse generator module. This effector module supplies

the input symbol k to the wave generator at a stochastic rate. On receiving the symbol

k, the wave generator upregulates the production of the diffusable signaling molecule emit,

depicted in Figure 3.6.1 as a pink cloud. The band pass filter module responds to different

concentrations of the emit signal, producing symbol r1 for medium concentrations of signal,

and r2 for high concentrations of signal.

The edge detection FSM receives input from the band bass filter and timer modules. From

the initial state Q1
0 of the edge detection FSM, a cell responds to a medium or high local

concentration of emit signal by upregulating its own production of emit and communicating

the reset symbol to the timer module on the transition from state Q1
0 to Q1

1. This has

the effect of rippling a wave of signaling molecules across the microcolony. After a short

period of time, the timer module provides the input symbol t1 back to the edge detection

FSM, moving the machine to state Q1
2. From this state, a high local concentration of

emit signal results in the FSM sending an off symbol to the toggle switch FSM, and a

lower local concentration of the signal results in the FSM sending an on symbol to the

toggle switch FSM. The intuition here is that, a high local concentration of the emit signal

indicates that the cell is surrounded by neighboring cells and detecting their signal wave.

A lower local concentration of the emit signal indicates that the cell is on the edge of the

microcolony.

90

Finally, the toggle switch FSM stores the boolean state of position of the cell, where state

Q2
0 indicates that a cell is not on the edge of a microcolony, and state Q2

1 indicates that a

cell is on the edge of a microcolony. In the biomolecular realization, transition to state Q2
1

can be linked to the upregulation of RFP, resulting in a red cell phenotype.

91

Appendix C

BOOLEAN NETWORK MODEL AS IT RELATES TO NEURAL
NETWORKS

Although Kauffman was the first to apply a Boolean network model to GRNs, the notion

of a discrete time, discrete state, network had been explored previously. Notably, Min-

sky investigated the computational complexity of synchronous neural networks built from

McClulloch-Pitts cells, and concluded that these networks can simulate any finite state ma-

chine, and vice versa [46]. For completeness, the relation between McCulloch-Pitts cells,

neural networks, finite state machines, and gene regulatory networks is discussed here.

C.1 McClulloch-Pitts Cells

Inspired by the observation that clusters of simple neurons can be wired together to carry

out complex function in the brain such as learning, and motivated to understand how to

engineer similar function, McCulloch and Pitts formalized an early model of the neuron [46].

A McCulloch-Pitts neuron takes a vector of Boolean-valued inputs, calculates a piecewise

linear combination of those inputs, and compares it to a threshold value to generate a

Boolean output. More precisely, given threshold h ∈ Z, excitatory inputs x1(t), . . . , xn(t) ∈
B, and inhibitory inputs i1(t), . . . , im(t) ∈ B at time t ∈ N, the output of the neuron y at

time t+ 1 is,

y(t+ 1) =

 1 if
∑

k xk(t) ≥ h and
∑

k ik(t) = 0

0 otherwise.
(C.1.1)

Furthermore, neurons can be wired together, by setting one or more inputs of a neuron

to be the outputs of one or more neurons. A neuron is said to fire at time t if its output

y(t) = 1.

92

Neural Network Finite State Machine

(a) AND

2
0

start

100, 01, 10 11

11

00, 01, 10

(b) OR

1
0

start

100 01, 10, 11

01, 10, 11

00

(c) NOT

0
0 1

start

1 0

0

1

(d) NOR

0
0 1

start

01, 10, 11 00

00

01, 10, 11

(e) Majority

2
0

start

1000, 001, 010, 100 011, 101, 110

011, 101, 110

000, 001, 010, 100

(f) Delay

1
0

start

10 1

1

0

Figure C.1.1: Examples of neural networks made with a single McClulloch-Pitts cell, along with

the finite state machine simulating the neuron starting from ground state (inputs set to 0). For each

neuron, input fibers are on the left and a single unlabeled output fiber is on the right. Each neuron is

labeled with the threshold value h = 0, 1, 2. Finite state machines have states 0 and 1 corresponding

to the neuron firing or not firing. Input symbols are binary sequences corresponding to the state of

the inputs fibers (0 or 1). Networks (a)-(d) compute the named Boolean logic operation on their

input in a single time step. (e) The Majority cell will fire when a majority of the input fibers are set

to 1 at the previous time step. (f) The Delay function relays the state of the input fiber with a unit

delay. Note that by wiring together neurons (a)-(c) and (f), or (c)-(d) and (f), any Boolean function

can be computed in a finite number of time steps with a non-recurrent network. As it turns out,

(c)-(d) are sufficient to simulate any finite state machine.

93

This model has a natural graphical representation, and an example is illustrated in Figure

C.1.1. In this representation a neuron is denoted by a vertex vi in a directed graph G =

(V,E), with associated time varying Boolean state xi(t) ∈ B and constant threshold hi ∈
Z. Typically the vertex is labeled by the threshold value hi. The input fibers to vi are

represented by the set of edges · → vi ∈ E, and output fibers represented by the set of edges

vi → · ∈ E. Input and output fibers are labeled excitatory or inhibitory, and the label is

represented graphically with a pointed () or ball () arrowhead, respectively.

C.2 Neural Networks

A neural network may also be an I/O systems. In this case the state of particular input

fibers are specified at every time step. These input fibers appear as half-edges into cells, as

in Figure C.1.1. Similarly, an output fiber that is not yet wired to an input cell may appear

as a half-edge out of a cell. Half-edge outputs may be unlabeled, as the meaning of the edge

label (excitatory or inhibitory) is arbitrary until wired to another cell.

Individual McClulloch-Pitts neurons can compute many different functions on their inputs.

For example, as shown in Figure C.1.1, basic Boolean operators such as AND, OR, NOR,

as well as more complex functions like Majority and Delay can be expressed as a single neu-

ron. Furthermore, any discrete function can be computed by a network of McClulloch-Pitts

neurons. Illustrated in Figure C.2.1, GRNs made only of nominally “on” repressing tran-

scription factors are equivalent to networks of McClulloch-Pitts neurons where the threshold

for all cells h = 0 and all connections are inhibitory. As discussed in Section 3.4, although

this class of networks may seem restrictive, it is sufficient to implement all Boolean logic

(shown in Figure C.2.1), and perhaps surprisingly, it is sufficient to simulate any finite state

machine.

94

Neural Network Repression Network
(a) NOT

0
u
1

y

u1 y

(b) NOR

0

yu
1

u
2

u1 y

u2

(c) OR

0 0

x yu
1

u
2

u1

u2

x y

(d) AND

0

y0
u
1

x
1

0
u
2

x
2

u1

u2

x1

x2

y

Figure C.2.1: Examples illustrating the equivalence of GRNs made only of nominally “on” re-

pressing transcription factors, with neural networks where for each cell h = 0, and all connections

are inhibitory. For clarity, input fibers (u1, u2) and neurons (x, x1, x2, y) have been named to cor-

respond with molecular species in the GRN. In (a)-(d), each network computes the named Boolean

logic operation on its inputs. (a)-(b) compute NOT and NOR in a single time step, where as (c)-(d)

require two time steps to propagate the input to the output y for AND and OR functions. Here

AND and OR networks are formed by composing the NOT and NOR networks. (a)-(b) are sufficient

to simulate arbitrary finite state machines.

95

Appendix D

FUTURE DIRECTIONS

D.1 CRISPR-based Finite State Machines

As mentioned previously, the GRN representation of a FSM might be implemented by any

number of biomolecular sensors and transcription regulation mechanisms. One promising

technology for engineering novel transcription factors is the synthetic Clustered Regularly

Interspaced Short Palindromic Repeats (CRISPR) system [101–103]. The CRISPR system

can enable arbitrary “wirings” between transcription factors, a crucial aspect of engineering

de novo gene regulation networks. The CRISPR mechanism is composed of two parts, the

single guide RNA (sgRNA) and a CRISPR-associated nuclease (Cas9). The sgRNA contains

a short guide sequence followed by short palindromic repeats that form a hairpin scaffold.

The hairpin scaffold associates with Cas9, guiding the nuclease to a seuqnece of DNA tar-

geted by the sgRNA guide sequence. [104,105] A synthetic, catalytically inactive, mutation

of Cas9 (dCas9) has been used successfully for steric repression in several prokaryotes and

eukaryotes. [60] Recently, dCas9 has been further modified by fusing the KRAB repression

domain as well as the VP64 and p65AD activation domains to the catalytically inactive

protein. These fusion proteins have been shown to be effective chimeric transcription fac-

tors in E. coli, yeast, and human cells. [89,106] Additionally, recent work in understanding

the auxin signal-processing pathway in plants has resulted in a new small molecule sensing

toolbox in yeast. [66] This toolbox, in conjunction with other small molecule systems [107],

might be used as a source of modular and tunable input sensing in the FSM scheme. For

example, biomolecular parts such as those illustrated in Figure D.1.1 that include tran-

scription factors that are sensitive to auxin and β-estradiol might be sufficient to implement

FSMs like the two-state machine discussed in Section 3.3 with a network like the one il-

96

lustrated in Figure D.1.2. Work such as this would represent an unprecedented top-down,

specification-driven approach to designing complex cellular circuits.

A.
Constituitive

Core promoter

Trans. regulated

DNA binding

sequences

B.
Transriptional

repression

domain

I.

Auxin degronII.

Estrogen receptorIII.
Ø

auxin

I

II

IV

I

III

IV

β-estradiol

I

III

IV

I

IV

Programmable

DNA binding

domain

IV.

C.
sgRNA

dCas9-RD

I

I

CRISPR

repressor complex

DNA targeting

sequence

Figure D.1.1: Biomolecular components for realizing finite state machines: (A) Transcription-

ally regulated and constitutive promoters. Transcriptionally regulated promoters have one or more

specific DNA sequences designed to bind to repressing transcription factors. Binding sequences are

illustrated as blue bars. Promoters are nominally “on” unless repressed by one or more transcription

factors. (B) Transcription factors for sensing auxin and β-estradiol are made of four primary com-

ponents: a transcriptional repression domain; a programmable DNA binding domain; and optional

auxin degron or estrogen receptor. (C) CRISPR trascription factors are used to implement the finite

state machine logic. The primary components of a CRISPR transcription factor are constitutively

expressed nuclease deficient Cas9 (dCas9) fused to a repression domain (RD), and programmable

single guide RNA (sgRNA) customized for specific DNA binding sequences. The scaffold section of

the sgRNA binds to the dCas9-RD, enabling targeted repression of specific genes.

D.2 Streptobacilli Implementation of a Turing Tape Machine

The work presented in this thesis suggests that single cells can implement finite state ma-

chines, and that biomolecular engineering frameworks such as CRISPR-based transcription

factors might offer a specific path for implementing novel state machines in cells. This

97

sgRNA-R1

I

T0

sgRNA-T0

I

R0

sgRNA-R1

I

T1

sgRNA-T1

I

R1

I

II

III

Sa

Ø

a

sgRNA-R0

I

T0
sgRNA-R0

I

T1

Sb

I

III

I

IV

III

IV

III

I

b

START

Figure D.1.2: Simple two-state machine described as a biomolecular realization of the gene

regulatory network using parts from Figure D.1.1. Input symbols a and b are implemented as auxin

and β-estradiol respectively. The gene network is arranged to mirror the layout of the gene regulatory

network in (B). Sensor genes (Sa and Sb in the GRN) are implemented as auxin and β-estradiol

sensors using transcription factors illustrated Figure D.1.1B. State and transition genes (Ri and Tqσ

in the GRN) are implemented as CRISPR transcription factors formed by constitutive dCas9-RD

and sgRNA sequences expressed under transcriptionally regulated promoters. For example, Ta0

in the GRN is implemented as sgRNA-R1 which is regulated by binding sites for sgRNA-T0 and

transcription factor Sa. When sgRNA-R1 is in high concentration, a transcription factor is formed

that binds to DNA binding sequence R1, repressing the expression of sgRNA-T1 (state gene R1 in

the GRN).

98

framework offers a new way to relate to the computational power of observed patterns of

gene expression in multicellular systems, as well as a step towards the implementation of

more complex models of computation (i.e. a stack machine or Turing Machine) in a grow-

ing microcolony. Still many questions remain—How is data stored and read from from a

microcolony? What are the considerations in terms of space-time complexity in designing

and executing algorithms on multicelled systems? What are the limitations on computa-

tion imposed by cell division times, the number of genes and unique molecular species in a

synthetic network, or the kinetics of small diffusing signal molecules?

The Church-Turing thesis hypothesizes that any general way to compute is equivalent to

the Turing machine [29]. Illustrated in Figure D.2.1a, often a Turing machine is visualized

as a tape head operating on an infinitely long tape. The tape is divided into discrete cells,

any of which may store one of a finite number of states. The tape head implements a finite

state machine that takes as input the state of the cell directly under the tape head, and can

write a new state state to the cell, and move the tape one cell to the left or right. The tape

serves as both the input and output to the Turing machine.

A Turing machine is specified by the tuple,

M = (Q,Σ,Γ, δ, q0, B, F). (D.2.1)

Where Γ is a finite set of tape symbols, and B ∈ Γ is a special blank symbol. The input to

a Turing machine is a finite length string of symbols γ1, . . . , γn ∈ Γ placed on the tape. All

other cells are marked blank with symbol B. The tape head automation is specified by the

tuple

A = (Q,Γ, δ, q0, F). (D.2.2)

Similar to the definition of a finite state automation in Section 3.1, Q is a finite set of states,

Γ is a finite set of input symbols, q0 ∈ Q is an initial state, and F ⊆ Q is a set of accepting

states. Unlike the previous definition, this transition function δ : Q× Γ→ Q× Γ× {L,R}
maps to a tuple (q, γ, d) where q ∈ Q is the next state, γ ∈ Γ is a symbol written to the

99

B B... γ
1

γ
2

γ
n

... B B ...

0

start

1

23

rate (k 1)
emit (s)

s>S 1
emit (s) ,t :=0

t>T 1

s > S 2

s ≤ S 2

t > T 2

Tape head automation A

Tape

(a) Turing’s tape machine

B,H
r

B,H
l

γ
1
,H

l
γ

2
,H

l
γ

n
,H... B,H

r

B,H
r

B,H
l

γ
1
,H

l
γ

2
,H

l
γ

n
,H...

B,HB,H
l

γ
1
,H

l
γ

2
,H

l
γ

n
,H

l
... B,H

r

t = m

t = m+1

t = m+2

time microcolony arangement

(b) Growing microcolony simulating a tape machine

Figure D.2.1: Turing’s tape machine and a simulating microcolony. (a) Tape cells are represented

by contiguous squares, and labeled with a tape symbols B, γ1, . . . , γn ∈ Γ. Initially the tape is seeded

with the input γ1, . . . , γn, and the tape head begins over the first input cell. At each time step the

tape head reads the current cell, updates the automation A, writes a new symbol from Γ to the tape,

and moves the tape one cell to the left or right. (b) A growing line of cells simulate a Tape machine.

Every cell runs a finite state automation, allowing a cell to behave as both the tape and the tape

head. A microcolony edge detection program allows cells to tell if they are on the edge of the tape,

and divide if the tape head is approaching. Cells shaded yellow are on the edge of the microcolony.

At t = m, the cell labeled γn, H holds the tape head (denoted H), and is marked with the symbol

γn. All other cells are labeled Hl or Hr to denote that they are left of the tape head or right of

the tape head, respectively. At time t = m + 1, the cell marked as the tape head emits a signal

(illustrated as a blue halo), to communicate to its immediate neighbors the current state at the tape

head, and the intension to move the tape head one cell to the right. At time t = m+ 2, the old tape

head has relabeled itself Hl. The cell to the right of the old tape head, having the state Hr moves to

the state H upon receiving the blue signal, becoming the new tape head. Simultaneously, the right

edge cell, detecting the tape head approaching, begins dividing to guarantee the tape continues to

extend beyond the tape head.

100

tape at the location of the tape head, d ∈ {L,R} is the direction to move the tape head

(L or R for “left” and “right” respectively). The tape head is positioned at one end of the

cells. At each time step the tape head first scans the tape and changes state, then writes a

tape symbol to the tape, then moves the tape left or right.

Informally, this machine might be simulated by a single cell growing into a line of cells,

such as a string of cyanobacteria, or cells trapped in a narrow microfluidic chamber as

illustrated in Figure D.2.1b. Intuitively, every cell could run the same automation A′ =

(Q′,Γ, δ′, q′0, F
′). A′ is based on A in Equation D.2.2, but lifted to the state space Q′ =

Q×Γ×{L,R}×{H,Hl, Hr}, where H, Hl, and Hr denote “tape head”, “left of tape head”,

and “right of tape head” respectively. The state transition function δ′ : Q′×Γ→ Q′, q′0, and

F ′ are lifted as well. The finite state automation A′ = (Q′,Σ, δ′, q0, F
′) can be implemented

with a repression network. Now, rather than moving the tape relative to the tape head,

a cell can “pass” the tape head sub-state to its neighbor by emitting a local “move right”

or “move left” signal as well as a signal communicating its current state q ∈ Q′. After

signaling the tape head movement, the cell then updates its own tape head state from H to

Hl or Hr. Since each cell of the tape is represented by a single cell microorganism, at any

time the tape is of finite length. Thus the tape must grow to out pace the computation. A

concurrent microcolony edge detection program allows edge cells to grow the tape in response

to receiving the tape head, and dynamically allocate resources to the computation.

The difficult problem of programming colony morphology, such as stripe formation, may be

naturally formalized as the problem of specifying a Turing machine that writes a desired

pattern of tape symbols. Computational tools like the gro specification and simulation

environment offer a compelling means to rapidly prototype, analyze, and refine models for

programming cell morphology. This approach will provide useful data for this construction

as a Boolean network, and possibly for more realistic models of gene transcription and

translation.

	List of Figures
	Notation
	Background and Motivation
	Abstract Models of Multicelled Systems
	Finite State Machines as a Building Blocks
	Overview

	Biomolecular Implementation of Linear I/O Systems
	Biomolecular Device as an I/O System
	Linear I/O Systems
	Construction of a Chemical Reaction Network from a Linear I/O System Specification
	Signals Represented as Chemical Concentrations
	Integration
	Gain and Summation
	Any Linear I/O System can be Approximated with Ideal Chemical Reactions
	A Simple Optimization: Weighted Integration and Summation
	Example: Ideal Chemical Reaction Network Implementation of a PI Controller

	Robustness and Sensitivity of Modeling Parameters and Disturbances in the Ideal Chemical Reaction Model
	The Role of in the Time Domain
	Fast Annihilation and Imperfect Rate Matching in the Chemical Realization of Integration, Gain, and Summation
	The Effect of Production and Degradation of Signal Species on the Chemical Realization of a Linear I/O System

	Mapping Integration, Summation, and Gain to DNA Strand Displacement Reactions
	Example: DNA PI Controller

	Discussion
	Methods

	A Framework for Implementing Finite State Machines in Gene Regulatory Networks
	Finite State Machines
	Modeling Gene Regulatory Networks
	Biomolecular Parts
	Boolean Network Model
	Delay Differential Equation Model

	General Construction of a GRN from an FSM Specification
	Boolean Network Model of the General Construction
	DDE Model of the General Construction
	Example: Two-state Machine as a Boolean Network
	Example: Two-state Machine as a System of DDEs

	GRNs are Computationally Equivalent to FSMs
	DDEs Approximate the Behavior of the Boolean Network
	The FSM Framework in a Cellular Information Processing Context
	Example: Bacterial Microcolony Edge Detection Circuit

	Discussion
	Methods

	Conclusions
	Bibliography
	Implementation and Simulation Details for the Chemical Realization and DNA Implementation of Linear I/O Systems
	Catalysis, Degradation, Annihilation
	Integration, Gain, Summation
	Integration
	Gain
	Summation

	Ideal Chemical Reaction Network and DNA Implementation of the PI Controller

	Bacterial Microcolony Edge Detection
	Boolean Network Model as it Relates to Neural Networks
	McClulloch-Pitts Cells
	Neural Networks

	Future Directions
	CRISPR-based Finite State Machines
	Streptobacilli Implementation of a Turing Tape Machine

